对图中某一顶点来说,求它到图中其余各顶点的最短路径
以一个例子为例:
以结点A为源节点,计算结点A到其余各结点的最短路径(最小代价路径)
1、初始时,除了结点A外,其余结点全是临时结点,首先计算其余结点的符号标记:
对结点B来说,A到结点B的代价是2,所以 D(B)=2,而前序结点是A,所以 p(B)=A,因此结点B的符号标记是(2,A);结点G同理
而其余结点都无法一步到达结点A,因此D=∞,p=没有。
2、在临时结点(图中蓝色结点中),选择D最小的结点加入永久结点(变成红色结点),更新该结点(所选到的D最小的结点)的所有邻居结点的符号标记
在临时结点中,B结点是D值最小的结点,因此将B结点加入永久结点,对B结点的邻居结点——E结点、C结点,更新标记值;以C结点为例,由于C结点原先的标记值是(∞,-),而 D(B)+c(B,C)=2+7=9,小于无穷,因此可以更新C结点的标记,更新成为(9,B)。
3、重复步骤2,直到所有结点都成为永久结点
当图中每一个结点都变成永久结点之后,图中每一个结点也就有了符号标记,沿着每个结点的符号标记中的 p (前序结点)画出一条路径,就是这个图,对于源节点 A的汇集树:
汇集树中,源结点A到任意结点的路径只有一条,且不会构成环