逻辑分类公式

模型假设

h θ ( x ) = ( 1 + e − θ T x ) − 1 h_{\theta}\left( \boldsymbol{x} \right) =\left( 1+e^{-\boldsymbol{\theta }^T\boldsymbol{x}} \right) ^{-1} hθ(x)=(1+eθTx)1

代价函数

J ( θ ) = 1 m ∑ i = 1 m Cost ( h θ ( x ( i ) ) , y ( i ) ) J\left( \boldsymbol{\theta } \right) =\frac{1}{m}\sum_{i=1}^m{\text{Cost}\left( h_{\theta}\left( \boldsymbol{x}^{\left( i \right)} \right) ,y^{\left( i \right)} \right)} J(θ)=m1i=1mCost(hθ(x(i)),y(i))

如果预测量 h θ ( x ) h_{\theta}\left( x \right) hθ(x) y y y不相符,则带来的代价是指数增加的,反之如果相符合,则指数减小,其中,

Cost ( h θ ( x ) , y ) = { − log ⁡ ( h θ ( x ) )    y = 1 − log ⁡ ( 1 − h θ ( x ) )    y = 0 \text{Cost}\left( h_{\theta}\left( \boldsymbol{x} \right) ,y \right) =\begin{cases} -\log \left( h_{\theta}\left( \boldsymbol{x} \right) \right)& \,\, y=1\\ -\log \left( 1-h_{\theta}\left( \boldsymbol{x} \right) \right)& \,\, y=0\\ \end{cases} Cost(hθ(x),y)={log(hθ(x))log(1hθ(x))y=1y=0
将上式化简等价为
Cost ( h θ ( x ) , y ) = − y log ⁡ ( h θ ( x ) ) + ( y − 1 ) log ⁡ ( 1 − h θ ( x ) ) \text{Cost}\left( h_{\theta}\left( \boldsymbol{x} \right) ,y \right) =-y\log \left( h_{\theta}\left( \boldsymbol{x} \right) \right) +\left( y-1 \right) \log \left( 1-h_{\theta}\left( \boldsymbol{x} \right) \right) Cost(hθ(x),y)=ylog(hθ(x))+(y1)log(1hθ(x))
综上,
J ( θ ) = 1 m ∑ i = 1 m [ − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( y ( i ) − 1 ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J\left( \boldsymbol{\theta } \right) =\frac{1}{m}\sum_{i=1}^m{\left[ -y^{\left( i \right)}\log \left( h_{\theta}\left( \boldsymbol{x}^{\left( i \right)} \right) \right) +\left( y^{\left( i \right)}-1 \right) \log \left( 1-h_{\theta}\left( \boldsymbol{x}^{\left( i \right)} \right) \right) \right]} J(θ)=m1i=1m[y(i)log(hθ(x(i)))+(y(i)1)log(1hθ(x(i)))]

梯度下降法

θ j    : =    θ j − α ∂ ∂ θ j J ( θ )    (j = 0,1,2,3  … n ) \theta _j\,\,:=\,\,\theta _j-\alpha \frac{\partial}{\partial \theta _j}J\left( \boldsymbol{\theta } \right) \,\, \text{(j}=\text{0,1,2,3 }\dots n\text{)} θj:=θjαθjJ(θ)j=012n
推导为
θ j    : =    θ j −   α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i )    (j = 0,1,2,3  … n ) \theta _j\,\,:=\,\,\theta _j-\,\alpha \frac{1}{m}\sum_{\text{i}=1}^{\text{m}}{\left( h_{\theta}\left( \boldsymbol{x}^{\left( i \right)} \right) -\text{y}^{\left( i \right)} \right) x_{j}^{\left( i \right)}}\,\,\text{(j}=\text{0,1,2,3 }\dots n\text{)} θj:=θjαm1i=1m(hθ(x(i))y(i))xj(i)j=012n
可以发现逻辑分类的梯度下降法的基本公式和线性回归的梯度下降法一样,不一样的地方在于他们的代价函数 h θ ( x ) h_{\theta}\left( \boldsymbol{x} \right) hθ(x)

多个分类

对于多个分类,利用多个逻辑分类器,观察各个分类器得到的可能值,可能最大的就是识别的类

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
多项式逻辑回归是逻辑回归的一种扩展,它允许非线性关系建模。公式推导过程如下: 假设我们有一个二分类问题,输入特征为 x,输出为 y,我们想要建立一个多项式逻辑回归模型。 1. 首先,我们假设存在一个函数 h(x),该函数可以将输入特征 x 映射到一个连续的实数域上。这个函数 h(x) 通常被称为决策函数或者假设函数。 2. 定义 sigmoid 函数 g(z) = 1 / (1 + e^(-z)),其中 z 是一个实数。sigmoid 函数的值域在 (0, 1) 之间。 3. 对于二分类问题,我们可以将输出 y 理解为在类别 1 的概率,即 P(y = 1 | x)。因此,我们可以将决策函数 h(x) 的输出通过 sigmoid 函数进行映射,得到 P(y = 1 | x)。 4. 假设我们想要建立一个 k 阶的多项式逻辑回归模型,我们可以将输入特征 x 按照多项式的形式进行扩展。例如,当 k = 2 时,我们可以构造出以下特征组合:[1, x, x^2]。 5. 假设我们有 m 组训练样本,每个样本的特征表示为 x^(i) = [1, x^(i), (x^(i))^2, ..., (x^(i))^k],其中 i 表示第 i 组训练样本。 6. 我们可以通过最大似然估计来求解模型参数。假设我们的训练集标签为 y^(i),我们可以定义似然函数 L(θ) = ∏(i=1->m) P(y^(i) | x^(i); θ),其中 θ 表示模型的参数。 7. 对于二分类问题,似然函数可以写成 L(θ) = ∏(i=1->m) (g(θ^T * x^(i)))^(y^(i)) * (1 - g(θ^T * x^(i)))^(1 - y^(i))。 8. 我们的目标是最大化似然函数,即求解使得 L(θ) 最大化的参数 θ。通常我们会使用梯度下降等优化算法来求解最优参数。 以上就是多项式逻辑回归公式推导的基本过程。通过将输入特征进行多项式扩展,我们可以更灵活地建模非线性关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值