线性回归和逻辑分类的正则化

线性回归的正则化

假设

h θ ( x ) = θ T x = θ 0 x 0 + θ 1 x 1 + θ 2 x 2 + ⋯ + θ n x n h_{\theta}\left( \boldsymbol{x} \right) =\boldsymbol{\theta }^T\boldsymbol{x}=\theta _0x_0+\theta _1x_1+\theta _2x_2+\cdots +\theta _nx_n hθ(x)=θTx=θ0x0+θ1x1+θ2x2++θnxn

代价函数

J ( θ ) = 1 2 m [ ∑    i    = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n θ j 2 ] J\left( \boldsymbol{\theta } \right) =\frac{1}{2m}\left[ \sum_{\,\,i\,\,=1}^m{\left( h_{\theta}\left( \boldsymbol{x}^{\left( i \right)} \right) -y^{\left( i \right)} \right) ^2}+\lambda \sum_{j=1}^n{\theta _j^2} \right] J(θ)=2m1[i=1m(hθ(x(i))y(i))2+λj=1nθj2]
加入了限制 θ j \theta_j θj大小的时候的惩罚项,使各个 θ j \theta_j θj不会太大,这样有利于防止过拟合。

梯度下降法

θ j    : =    θ j − α ∂ ∂ θ j J ( θ )    ( j = 0,1,2,3  … n ) { θ 0    : =    θ 0 −   α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i )    j = 0 θ j    : =    θ j −   α 1 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) + λ θ j ]    j > 0 \theta _j\,\,:=\,\,\theta _j-\alpha \frac{\partial}{\partial \theta _j}J\left( \boldsymbol{\theta } \right) \,\, \left( j=\text{0,1,2,3 }\dots n \right) \\ \begin{cases} \theta _0\,\,:=\,\,\theta _0-\,\alpha \frac{1}{m}\sum_{i=1}^m{\left( h_{\theta}\left( \boldsymbol{x}^{\left( i \right)} \right) -\text{y}^{\left( i \right)} \right) x_{0}^{\left( i \right)}}& \,\, j=0\\ \theta _j\,\,:=\,\,\theta _j-\,\alpha \frac{1}{m}\left[ \sum_{i=1}^m{\left( h_{\theta}\left( \boldsymbol{x}^{\left( i \right)} \right) -\text{y}^{\left( i \right)} \right) x_{j}^{\left( i \right)}}+\lambda \theta _j \right]& \,\, j>0\\ \end{cases} θj:=θjαθjJ(θ)(j=0,1,2,3 n){θ0:=θ0αm1i=1m(hθ(x(i))y(i))x0(i)θj:=θjαm1[i=1m(hθ(x(i))y(i))xj(i)+λθj]j=0j>0

补充: 正规方程法的正则化

X m × ( n + 1 )    = [ ( x ( 1 ) ) T ⋮ ( x ( m ) ) T ] , θ = [ θ 0 ⋮ θ n ] , y = [ y ( 1 ) ⋮ y ( m ) ] \boldsymbol{X}_{m\times \left( n+1 \right)}\,\,=\left[ \begin{array}{c} \left( x^{\left( 1 \right)} \right) ^T\\ \vdots\\ \left( x^{\left( m \right)} \right) ^T\\ \end{array} \right] ,\boldsymbol{\theta }=\left[ \begin{array}{c} \theta _0\\ \vdots\\ \theta _n\\ \end{array} \right] ,\boldsymbol{y}=\left[ \begin{array}{c} y^{\left( 1 \right)}\\ \vdots\\ y^{\left( m \right)}\\ \end{array} \right] Xm×(n+1)=(x(1))T(x(m))T,θ=θ0θn,y=y(1)y(m)

θ = ( X T X + [ 0 1 1 ⋱ 1 ] ⎵ ( n + 1 ) × ( n + 1 ) ) − 1 X T y \boldsymbol{\theta }=\left( \boldsymbol{X}^T\boldsymbol{X}+\underset{\left( n+1 \right) \times \left( n+1 \right)}{\underbrace{\left[ \begin{matrix}{} 0& & & & \\ & 1& & & \\ & & 1& & \\ & & & \ddots& \\ & & & & 1\\ \end{matrix} \right] }} \right) ^{-1}\boldsymbol{X}^T\boldsymbol{y} θ=XTX+(n+1)×(n+1) 01111XTy
加入了一个特殊的矩阵,使方程始终有解。

逻辑分类的正则化

假设

h θ ( x ) = ( 1 + e − θ T x ) − 1 h_{\theta}\left( \boldsymbol{x} \right) =\left( 1+e^{-\boldsymbol{\theta }^T\boldsymbol{x}} \right) ^{-1} hθ(x)=(1+eθTx)1

代价函数

J ( θ ) = 1 m ∑ i = 1 m Cost ( h θ ( x ( i ) ) , y ( i ) ) + λ 2 m ∑ j = 1 n θ j 2 J\left( \boldsymbol{\theta } \right) =\frac{1}{m}\sum_{i=1}^m{\text{Cost}\left( h_{\theta}\left( \boldsymbol{x}^{\left( i \right)} \right) ,y^{\left( i \right)} \right)}+\frac{\lambda}{2m}\sum_{j=1}^n{\begin{array}{c} \theta _j^2\\ \end{array}} J(θ)=m1i=1mCost(hθ(x(i)),y(i))+2mλj=1nθj2

也即
J ( θ ) = 1 m ∑ i = 1 m [ − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( y ( i ) − 1 ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] + λ 2 m ∑ j = 1 n θ j 2 J\left( \boldsymbol{\theta } \right) =\frac{1}{m}\sum_{i=1}^m{\left[ -y^{\left( i \right)}\log \left( h_{\theta}\left( \boldsymbol{x}^{\left( i \right)} \right) \right) +\left( y^{\left( i \right)}-1 \right) \log \left( 1-h_{\theta}\left( \boldsymbol{x}^{\left( i \right)} \right) \right) \right]}+\frac{\lambda}{2m}\sum_{j=1}^n{\begin{array}{c} \theta _j^2\\ \end{array}} J(θ)=m1i=1m[y(i)log(hθ(x(i)))+(y(i)1)log(1hθ(x(i)))]+2mλj=1nθj2

梯度下降法

θ j    : =    θ j − α ∂ ∂ θ j J ( θ )    ( j = 0,1,2,3  … n ) \theta _j\,\,:=\,\,\theta _j-\alpha \frac{\partial}{\partial \theta _j}J\left( \boldsymbol{\theta } \right) \,\, \left( j=\text{0,1,2,3 }\dots n \right) θj:=θjαθjJ(θ)(j=0,1,2,3 n)
推导为
{ θ 0    : =    θ 0 −   α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i )    j = 0 θ j    : =    θ j −   α 1 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) + λ θ j ]    j > 0 \begin{cases} \theta _0\,\,:=\,\,\theta _0-\,\alpha \frac{1}{m}\sum_{i=1}^m{\left( h_{\theta}\left( \boldsymbol{x}^{\left( i \right)} \right) -\text{y}^{\left( i \right)} \right) x_{0}^{\left( i \right)}}& \,\, j=0\\ \theta _j\,\,:=\,\,\theta _j-\,\alpha \frac{1}{m}\left[ \sum_{i=1}^m{\left( h_{\theta}\left( \boldsymbol{x}^{\left( i \right)} \right) -\text{y}^{\left( i \right)} \right) x_{j}^{\left( i \right)}}+\lambda \theta _j \right]& \,\, j>0\\ \end{cases} {θ0:=θ0αm1i=1m(hθ(x(i))y(i))x0(i)θj:=θjαm1[i=1m(hθ(x(i))y(i))xj(i)+λθj]j=0j>0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值