吴恩达机器学习视频总结Day02之多变量线性回归

本文探讨了多变量线性回归的基本原理,包括使用θ参数预测输出的数学模型,以及通过梯度下降法优化这些参数的过程。文中详细介绍了特征缩放的重要性及其两种常见方法:除以最大值和均值归一化,以加速梯度下降的收敛。此外,还讨论了如何选择合适的学习速率α,并对比了梯度下降与正规方程法在求解θ参数上的优缺点。
摘要由CSDN通过智能技术生成

1.多变量线性回归

h(x)=θ0x0+θ1x1+θ2x2+...+θnxn

h(x)=θt(t为矩阵的转正)*x

多元梯度下降

2.特征缩放 

目的:提高梯度下降的收敛速度

特征缩放的标准:一般将特征近似地缩放到-1到1,不用严格为-1和1,但是太大或太小时就需要处理。

(1)除以最大值

左图是原始情况下,梯度下降的收敛;右图将变量除以最大值后,梯度下降的收敛。

(2)均值归一化

u1代表均值;s1代表范围,即最大值-最小值

3.选择合适的学习速率a

J(θ)随迭代次数变化。出现以上几种情况时,都可能是a值过大,需要选择较小的a值。

 

4.正规方程法  可不进行特征缩放

除迭代外另一种求θ得方法,可以一步求出θ的最优解。

公式:

X的构建:

 

梯度下降和正规方程优缺点比较: 比线性回归更复杂的算法时,一般还是梯度下降

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值