自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 资源 (2)
  • 收藏
  • 关注

原创 点云文件的格式转换:ply转pcd,pcd转pth,查看pth格式文件

【代码】点云文件的格式转换:ply转pcd,pcd转pth,查看pth格式文件。

2023-05-24 16:00:56 2500 1

原创 vscode远程连接服务器(remote ssh)+上传本地文件到服务器(sftp)

vscode远程连接服务器并上传本地文件到服务器(remote ssh + sftp)

2022-10-19 10:58:22 41818 18

原创 [pytorch] torch.cuda.is_available() False 解决方法

进网站后,由于内容特别多,我们用搜索功能ctrl+f,比如我的cuda是11.0版本,就输入cu110,假如是cuda11.3版本,就输入cu113。然后选择想要的pytorch版本,cp38表示虚拟环境是python3.8的环境,torchvision也可以通过这个方法获得。出现这种情况通常是下载了CPU版本的pytorch,一般通过命令下载的pytorch(包括官网提供的命令)是CPU版本的,可以通过查询anaconda里的安装包判断是否安装了CPU版本的pytorch。安装完成后,再次尝试,成功!

2022-10-15 19:25:43 6282 5

原创 双目相机标定与三维重建

1.相机标定的目的:(1)一个就是矫正由于镜头畸变造成的图片的变形,例如,现实中的直线,拍摄成图像后会外凸或内凹,进行相机标定后可以对这种情况进行校正;(2)另一个是根据拍摄获得的二维图像来重构三维场景,因为标定的过程就是通过一系列的三维点和它对应的二维图像点进行数学变换,求出相机的内参数和外参数。标定之后的相机,可以进行测距、三维场景的重建等。2.四个坐标系 相机标定的目的之一是为了建立物体从三维世界到成像平面上各坐标点的对应关系,所以首先要了解以下四个坐标系:世界坐标系:用户定义的三维世界

2022-06-13 19:24:51 26043 22

原创 PointNet解读

PointNet解决的问题:如上图所示:1.点云图像的分类(整片点云是什么物体)2.点云图像的部件分割(整片点云所代表的物体能拆分的结构)3.点云图像的语义分割(将三维点云环境中不同的物体用不同的颜色区分开)论文中展示的输入输出效果:1.部件分割的效果(左边是输入不完整的点云,右边是输入完整的点云)2.语义分割的效果论文中提到的点云的三个特性:1.点的无序性:点云是无序的集合,点与点之间没有严格的顺序,如将两个点交换之后仍然表示同一个点云。2.点之间的相互作.

2022-05-09 21:04:16 13266 1

原创 (详细PCL安装)PCL+python+windows+anaconda环境

看了很多相关的博客感觉写完整和详细的很少,决定写一篇给还没有安装好的码友和自己看。上次写了一篇博客“在pycharm的anaconda环境下安装python_pcl库”链接如下:在pycharm的anaconda环境下安装python_pcl库_没李不邢的博客-CSDN博客如果想要使用PCL库的可视化模块的话,还要额外安装PCL库。然而最难受的一点就是PCL库...

2022-04-11 16:43:21 10460 45

原创 (安装pclpy)pclpy+windows+anaconda

pclpy-0.12.0版本,支持windows的python3.6和3.7版本,但pclpy-0.12.0移除了可视化模块,即看不到点云效果了。安装方法:进入对应python版本的虚拟环境,然后输入:pip install pclpy==0.12.0 -i -i http://pypi.douban.com/simplepclpy-0.11.0版本,只支持windows的python3.6版本,但有可视化模块,安装方法:进入python3.6版本的虚拟环境,然后输入:pip install p

2022-02-28 15:35:58 1850

原创 (详细安装python_pcl) python_pcl+windows+anaconda

需要根据已有的python_pcl.whl文件的版本来创建对应anaconda虚拟环境的python版本,这里拿python_pcl-0.3.0rc1-cp37-cp37m-win_amd64.whl 文件来举例,可以根据文件名cp37,来判断需要创建anaconda-python3.7环境。如果你有其它的python_pcl.whl也可以通过类似的方法进行操作。需要python_pcl-0.3.0rc1-cp37-cp37m-win_amd64.whl 可访问以下链接下载:链接:h...

2021-12-27 21:01:47 4252 15

原创 点云配准、拼接概念综述

点云扫描设备在对环境进行扫描时,往往不能在同一坐标系下将环境的点云数据一次性测量。其原因是环境大小超过了扫描设备的测量范围,并且环境里的物体之间相互遮挡,点云扫描设备在一个角度不太可能扫描到物体的完整点云。得到多片点云数据后,我们需要一种技术将多片点云数据旋转平移到统一的坐标系下,使它们能够组成完整的环境点云数据,这种技术叫点云拼接。点云拼接是任意位置的点云的重叠部分相互配准的过程,点云配准分为刚体和非刚体(只存在空间旋转平移变换的配准问题称为刚体配准,存在缩放、变形、仿...

2021-12-24 17:01:06 14573

原创 闵帆(CSDN博客同名)老师论文写作课收获

前言:从学术论文是什么、为什么写、如何写、什么时候写、哪里写到如何高效通过编辑审核,一气呵成,保姆式教程,语言亲切且全是干货,强烈建议想要学习论文写作的同学阅读闵帆老师博客专栏《论文写作》。主文:(1)在自己写论文之前,先大量阅读别人的文献非常重要,可以总结出一套属于自己的模板,同时也可以使用自己的模板。(2)论文里的用词也很讲究,一般来说一些用词或者是同义词尽量不要使用,如:easy/simple这类用词,试想既然都说了简单,那么研究的意义是什么呢?估计期刊编辑看了...

2021-12-17 20:47:53 621

原创 点云相关基础知识

点云:从字面意思出发为“大量点的集合”,点云表达的意思就是三维坐标系下点的集合。这些点包含有丰富的信息,包含该点在三维坐标系中的坐标位置、颜色数据、反射强度值、法向量等。获取点云的方法:RGB-D相机在 RGB-D 图像中,每个(x,y)坐标将对应于四个属性(深度值D,R,G,B)。如图所示深度值(灰度)是用于表示物体与传感器之间的距离,知道(x,y)坐标以及属性之一深度值D即可锁定该点在三维空间中的位置,再通过另外三个属性RGB(即红绿蓝三原色)即可得到该点的颜色数据。...

2021-12-09 21:10:50 11033

原创 机器学习-正则化

5.7正则化上次我们提到模型对训练数据过度的优化拟合,使模型能够很好的对训练数据进行拟合,但却对测试数据的预测或者分类效果很差,这种状态被称为过拟合。一般过度增加函数的次数会导致过拟合的情况。我们有哪些方法可以避免过拟合的情况呢?一般情况下:增加全部训练数据的训练量 使用简单的模型 正则化我们知道机器学习是从数据中学习的,所以足够的训练数据最重要。其次简单的模型也有助于防止过拟合的情况。我们现在需要着重介绍的是正则化的方法:首先我们要理解使用正则化产生的效果。我们知道无论回归还是分类,参数

2021-12-05 14:54:13 842

原创 校园网拨号连接未创建成功-解决方案

如果校园网客户端出现如下情况,可按照以下方法进行解决:原因是由于注册表的Parameters.reg文件的缺少。解决步骤:找到一台能够用该网络上网的电脑进行操作,win+r同时按下,即如下图所示:同时按下后,在打开的窗口中输入regedit并点击确定进入到注册表编辑器,如图所示:依次展开:计算机\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\EventLog然后导出Parameters文件到指定的位置..

2021-12-01 20:28:29 6541 8

原创 机器学习-模型评估

5.6模型的评估构建模型很重要,模型的评估同样非常重要,模型的评估就是判断拟合出来的模型是否优秀。在很多情况下,比如多维度的时候,我们是很难直观的判别模型的好坏(正确性或者是精度),那我们应该怎样来判别呢?在低维度的时候最简单的方法就是观察函数图形,观察函数图形是否很好的拟合了训练数据,如图5-6-1所示:图5-6-1但在高维度的问题中不能直观的在图上画出来,所以这个方法也就不可行了。既然不能用图形来表示高维度的问题,那我们需要定量的表示模型的精度,这就是我们通常意义下的模型的评

2021-11-28 18:34:16 1164

原创 机器学习-逻辑回归

5.5 逻辑回归上次讲到了感知机,感知机的最大缺点就是只能解决线性可分的问题,即只能使用直线分类的情况。所以,感知机也被称为简单感知机或者是单层感知机,虽然单层感知机很弱,但是多层感知机就是我们所熟悉的神经网络了,所以感知机也是学习分类的基础。既然感知机不能用于线性不可分的问题,那么有什么方法能解决线性不可分问题呢?那么就引入了这个小节我们要讲的内容,即逻辑回归。虽然叫逻辑回归,实际上它做的是分类的问题,主要是用于二分类,即只分为两类,是某个事物或者不是某个事物。而逻辑回归不同于感知机之处在于,逻辑

2021-11-24 17:46:34 1217 1

原创 机器学习-梯度下降算法

4.3.3梯度的计算梯度下降在机器学习中应用十分的广泛,不论是在线性回归还是逻辑回归中,梯度就是表示某一函数在该点处的方向导数沿着该方向取得最大值即函数在该方向的导数,它的主要目的是通过迭代找到目标函数的最小值,或者收敛到最小值。本文将从一个下山的场景开始,先提出梯度下降算法的基本思想,进而从数学上解释梯度下降算法的原理,解释为什么要用梯度,最后实现一个简单的梯度下降算法的实例。梯度下降法的基本思想可以类比为一个下山的过程。假设这样一个场景:一个人被困在山上,需要从山上下来(找到...

2021-11-21 16:07:00 1356

原创 机器学习-感知机

5.4 学习分类5.4.1 什么是分类我们知道数据研究的基础是给数据“贴标签”进行分类。类别分得越精准,我们得到的结果就越有价值。分类是一个有监督的学习过程,有监督的意思就是目标数据库中的相关数据的类别是已知的,分类过程需要做的就是把每一条记录归到对应的类别之中。由于必须事先知道各个类别的信息,并且所有待分类的数据条目都默认有对应的类别,因此分类算法也有其局限性,当上述条件无法满足时,我们就需要尝试聚类分析。而聚类就是一个无监督的学习过程,即目标数据库中的相关数据的类别是未知的,需要自行给这些数据分

2021-11-21 15:46:01 1066 1

单目、双目相机的标定原理以及图解

计算机视觉方向,单目/双目相机的详细标定原理以及图解,双目测距、三维重建 (世界坐标系到像素坐标系的转换,单目相机内外参数畸变系数的求解,单应性矩阵,双目标定,立体标定,立体校正,立体匹配,视差计算等)

2022-07-27

相机标定的目标、原理PPT(包含标定目的,四种坐标的转换、张正友标定法、单应性矩阵的求解、相机内参外参的求解,畸变矫正等)

相机标定PPT ,内容包含标定目的,四种坐标的转换、张正友标定法、单应性矩阵的求解、相机内参外参的求解,畸变矫正等。适用于学习单目双目视觉的研究者了解相机测距和三维建模等的原理。

2022-06-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除