并查集(Java)

并查集

并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。
并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林(多棵树)来表示。

UF.java(并查集接口)
//并查集接口
public interface UF {
	int getSize();//返回并查集中树的个数,即集合的个数
	boolean isConnected(int p,int q);//查询元素p与元素q是否连接
	void unionElements(int p,int q);//将元素q与元素p进行合并
}

UnionFind.java(并查集)
//并查集
public class UnionFind implements UF {
	private int[] parent;// 基础数组形成多棵树结构
	// private int[] sz;// sz[i]表示以i为根的集合节点个数
	private int[] rank;// rank[i]表示以i为根的集合所表示的树的层数(h)

	public UnionFind(int size) {
		// TODO Auto-generated constructor stub
		parent = new int[size];
		rank = new int[size];
		for (int i = 0; i < size; i++) {
			parent[i] = i;// 初始根节点
			rank[i] = 1;// 初始每棵树的节点为1
		}
	}

	@Override
	public int getSize() {
		// TODO Auto-generated method stub
		return parent.length;
	}

	// 查找索引为p的根节点 路径压缩
	// O(h)的复杂度 h为树的高度
	private int find(int p) {
		if (p < 0 && p >= parent.length)
			try {
				throw new Exception("p越界");
			} catch (Exception e) {
				// TODO Auto-generated catch block
				e.printStackTrace();
			}
		// 非递归算法性能略微高于递归算法(递归算法需要有一定的内存开销)
		while (p != parent[p]) {
			parent[p] = parent[parent[p]];// 路径压缩 让当前p节点的父亲指向p节点父亲的父亲
			p = parent[p];// 让p指向新的父亲节点
		}
		return p;
		
//		递归算法  路径压缩为深度最小
//		if (p != parent[p])// 如果p不是根节点
//			parent[p] = find(parent[p]);// p指向父亲节点的根节点 进行递归
//		return parent[p];// 返回p的父亲节点即根节点
	}

	// 查看p元素与q元素是否属于一个集合
	// O(h)的复杂度 h为树的高度
	@Override
	public boolean isConnected(int p, int q) {
		// TODO Auto-generated method stub
		return find(p) == find(q);
	}

	// 合并p元素与q元素所属的集合
	// O(h)的复杂度 h为树的高度
	@Override
	public void unionElements(int p, int q) {
		// TODO Auto-generated method stub
		int proot = find(p);
		int qroot = find(q);
		if (proot == qroot)
			return;
		if (rank[proot] < rank[qroot]) {// p树的高度<q树的高度
			parent[proot] = qroot;// p的根节点指向q的根节点
		} else if (rank[proot] > rank[qroot]) { // p树的高度>q树的高度
			parent[qroot] = proot;
		} else p树的高度=q树的高度
			parent[qroot] = proot;
		rank[proot] += 1;// 高度相同时,合并后h+1
	}

}

时间复杂度

查询是否连接与合并方法的时间复杂度均为O(h),h为所查询树的高度(深度);
如果是要讨论n的时间复杂度,即时间复杂度为O(log*n)
在这里插入图片描述

并查集是一种常用的数据结构,用于处理集合分组的问题,常用于解决查找、合并等操作。在Java中,可以使用数组来实现基本版的并查集,它通常包含两个主要部分: 1. **Disjoint Set**(不相交集合):一个数组`parent`,每个元素i的值表示i所属的集合的根节点索引。如果`parent[i] == i`,则i是其自身的根。 2. **Union By Rank**(按秩合并)和**Path Compression**(路径压缩)策略: - **Union**: 如果需要将集合A和B合并,找到两个集合的根节点`rootA = findSet(A)`和`rootB = findSet(B)`。如果`rootA != rootB`,则将秩较高(即`parent[rootA]`或`parent[rootB]`较小的那个的秩加一)的集合的根指向另一个集合的根。 - **Find Set**: 使用递归遍历`parent[]`数组,直到找到`parent[i] == i`为止,返回的就是根节点索引。 下面是简单的Java数组实现示例: ```java class DisjointSet { private int[] parent; private int rank; public DisjointSet(int n) { parent = new int[n]; Arrays.fill(parent, -1); // 初始化所有元素为它们自己的根 rank = 0; // 初始秩都是0 } public int findSet(int i) { if (parent[i] < 0) return i; // 如果是根节点,则直接返回 parent[i] = findSet(parent[i]); // 否则继续找根 return parent[i]; } public void union(int a, int b) { int rootA = findSet(a); int rootB = findSet(b); if (rootA == rootB) return; // 如果已经是同一集合,无需合并 if (rank[rootA] > rank[rootB]) { // 根据秩合并 parent[rootB] = rootA; } else { parent[rootA] = rootB; if (rank[rootA] == rank[rootB]) rank[rootB]++; } } } // 示例: DisjointSet ds = new DisjointSet(5); ds.union(0, 1); // 合并A和B ds.union(3, 4); // 可能会形成A-B-C-D-E或A-B-C-E的结构 int connected = ds.findSet(2); // 查找2是否与其他已合并的节点相连 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值