人工智能 特征工程 特征变换 分箱学习总结

概念

  • 特征构造的过程中,对特征做分箱处理时必不可少的过程
  • 分箱就是将连续变量离散化,合并成较少的状态

分箱的作用

  • 离散特征的增加和减少都很容易,易于模型的快速迭代;
  • 稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展;
  • 分箱(离散化)后的特征对异常数据有很强的鲁棒性
  • 单变量分箱(离散化)为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力
  • 分箱(离散化)后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力;
  • 分箱(离散化)后,模型会更稳定,如对年龄离散化,20-30为一个区间,不会因为年龄+1就变成一个新的特征。
  • 特征离散化以后,可以将缺失作为独立的一类带入模型

等频分箱

请添加图片描述

红色:目标样本

等距分箱

红色:目标样本
请添加图片描述

红色:目标样本

*卡方分箱

将卡方值较小的两个相邻箱体合并

使得不同箱体的好坏样本比例区别放大,容易获得高IV

公式

p ‾ b a d = ∑ k n b a d k ∑ k ( n g o o d k + n b a d k ) \rm{\overline{p}_{bad} = \frac{\sum_{k}n^k_{bad}}{\sum_{k}(n^k_{good}+n^k_{bad})}} \\ pbad=k(ngoodk+nbadk)knbadk
χ k 2 = ( n b a d k − p ‾ b a d ( n g o o d k + n b a d k ) ) 2 p ‾ b a d ( n g o o d k + n b a d k ) \rm{\chi_{k}^{2}=\frac{(n^k_{bad}-\overline{p}_{bad}(n^k_{good}+n^k_{bad}))^2}{\overline{p}_{bad}(n^k_{good}+n^k_{bad})}} χk2=pbad(ngoodk+nbadk)(nbadkpbad(ngoodk+nbadk))2

k表示第几个箱子

例子

步骤:
初始化:根据连续变量值大小进行排序,构建最初的离散化
合并:遍历相邻两项合并的卡方值,将卡方值最小的两组合并,不断重复直到满足分箱数目要求

请添加图片描述

[22-35](35-45](45-55](55-65]总计
good32218
bad12238
p50%
p(good+bad)2222-
chi2(1-2)^2/2=1/2(2-2)^2/2=0(2-2)^2/2=0(3-2)^2/2=1/2-

PBad= 8/16
xk2 = (1-2)^2/2=1/2

卡方值不同代表箱体差异化
使用toad库可以进行卡方分箱代码编写

心得:分箱作为必不可少的一个过程,知道其中原理方可更好的处理数据

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
特征最优分箱是一种优化特征工程的方法,可以有效提高模型的预测性能。而 XGBoost 是一种基于梯度提升决策树的机器学习算法,具有良好的性能和可解释性。因此,在结合使用特征最优分箱和 XGBoost 时,可以得到更好的模型效果。 下面是使用 Python 和 XGBoost 实现特征最优分箱的示例代码: ```python import pandas as pd import numpy as np import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 读入数据 data = pd.read_csv('data.csv') # 将特征分为连续型和离散型 continuous_features = ['feature1', 'feature2', ...] discrete_features = ['feature3', 'feature4', ...] # 连续型特征最优分箱 for feature in continuous_features: data[feature+'_bin'] = pd.qcut(data[feature], q=10, duplicates='drop') # 离散型特征编码 for feature in discrete_features: data[feature+'_code'] = pd.factorize(data[feature])[0] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data.drop('label', axis=1), data['label'], test_size=0.2, random_state=0) # 定义 XGBoost 模型 params = {'objective': 'binary:logistic', 'max_depth': 3, 'eta': 0.1, 'subsample': 0.8} num_rounds = 100 # 训练模型 dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) bst = xgb.train(params, dtrain, num_rounds) # 预测并计算准确率 y_pred = bst.predict(dtest) y_pred[y_pred>=0.5] = 1 y_pred[y_pred<0.5] = 0 accuracy = accuracy_score(y_test, y_pred) print('Accuracy: %.2f%%' % (accuracy * 100.0)) ``` 在这个示例中,我们首先将连续型特征进行了最优分箱处理,然后对离散型特征进行了编码。接着使用 XGBoost 建立了一个二分类模型,并进行了训练和预测。 需要注意的是,特征最优分箱的实现需要根据具体的业务场景和数据特征进行调整。在实际应用中,可能需要对连续型特征进行其他类型的分箱或离散化处理,以及对离散型特征进行其他类型的编码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鹏晓星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值