高等数学常用数学公式,持续更新中

常用

负指数幂 : a − p = 1 a p , a ≠ 0 负指数幂:a^{-p}=\dfrac{1}{a^p},a\neq 0 负指数幂:ap=ap1,a=0
x > = 0 时候 , x 1 2 = x , x 1 3 = x 3 x>=0时候,x^{\frac{1}{2}}=\sqrt{x},x^{\frac{1}{3}}=\sqrt[3]{x} x>=0时候,x21=x ,x31=3x .
求根公式 − b ± b 2 − 4 a c 2 a 求根公式 \dfrac{-b\pm \sqrt{b^2-4ac}}{2a} 求根公式2ab±b24ac
c o s ( − x ) = c o s x , s i n ( − x ) = − s i n x cos(-x)=cosx,sin(-x)=-sinx cos(x)=cosx,sin(x)=sinx

三角函数值

弧度0 π \pi π 2 π 2\pi 2π π 2 \dfrac{\pi}{2} 2π π 4 \dfrac{\pi}{4} 4π π 6 \dfrac{\pi}{6} 6π
sin0001 2 2 \dfrac{\sqrt2}{2} 22 1 2 \dfrac{1}{2} 21
cos1-110 2 2 \dfrac{\sqrt2}{2} 22 3 2 \dfrac{\sqrt3}{2} 23
tan000-1 3 3 \dfrac{\sqrt3}{3} 33

两角和与差公式

s i n ( A ± B ) = s i n A c o s B ± c o s A s i n B sin(A{\pm}B)=sinAcosB{\pm}cosAsinB sin(A±B)=sinAcosB±cosAsinB
c o s ( A ± B ) = c o s A c o s B ∓ s i n A s i n B cos(A{\pm}B)=cosAcosB{\mp}sinAsinB cos(A±B)=cosAcosBsinAsinB
t a n ( A ± B ) = t a n A ± t a n B 1 ∓ t a n A t a n B tan(A{\pm}B)=\dfrac{tanA{\pm}tanB}{1{\mp}tanAtanB} tan(A±B)=1tanAtanBtanA±tanB

倍角公式

s i n 2 α = 2 s i n α c o s α sin2\alpha=2sin{\alpha}cos\alpha sin2α=2sinαcosα
c o s 2 α = c o s 2 α − s i n 2 α = 2 c o s 2 α − 1 = 1 − 2 s i n 2 a cos2\alpha={cos^2\alpha}-{sin^2\alpha}=2cos^2\alpha-1=1-2sin^2a cos2α=cos2αsin2α=2cos2α1=12sin2a
t a n 2 α = 2 t a n α 1 − t a n 2 α tan2\alpha=\dfrac{2tan\alpha}{1-tan^2\alpha} tan2α=1tan2α2tanα

半角公式

s i n α 2 = ± 1 − c o s α 2 sin\dfrac{\alpha}{2}=\pm\sqrt{\dfrac{1-cos\alpha}{2}} sin2α=±21cosα
c o s α 2 = ± 1 + c o s α 2 cos\dfrac{\alpha}{2}=\pm\sqrt{\dfrac{1+cos\alpha}{2}} cos2α=±21+cosα
t a n α 2 = ± 1 − c o s α 1 + c o s α = s i n α 1 + c o s α = 1 − c o s α s i n α tan\dfrac{\alpha}{2}=\pm\sqrt{\dfrac{1-cos\alpha}{1+cos\alpha}}=\dfrac{sin\alpha}{1+cos\alpha}=\dfrac{1-cos\alpha}{sin\alpha} tan2α=±1+cosα1cosα =1+cosαsinα=sinα1cosα

切线方程

y − y 0 = f ′ ( x 0 ) ( x − x 0 )   k = f ′ ( x 0 ) y-y_0=f'(x_0)(x-x_0) \ k=f'(x_0) yy0=f(x0)(xx0) k=f(x0)

法线方程

y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 )   k = − 1 f ′ ( x 0 ) y-y_0=-\dfrac{1}{f'(x_0)}(x-x_0) \ k=-\dfrac{1}{f'(x_0)} yy0=f(x0)1(xx0) k=f(x0)1

不定积分

通过还原法、分部积分法求解

定积分

先求出不定积分 F F F(原函数)
∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_{a}^{b}f(x)dx = F(b)-F(a) abf(x)dx=F(b)F(a)

无穷小量和无穷大量

lim ⁡ x → 0 1 x = ∞ \lim\limits_{x\rightarrow 0}\dfrac{1}{x}=\infty x0limx1=
lim ⁡ x → ∞ 1 x = 0 \lim\limits_{x\rightarrow \infty}\dfrac{1}{x}=0 xlimx1=0
求极限时常用等价的无穷小量
x → 0 x\rightarrow 0 x0时: x ≈ s i n x ≈ t a n x ≈ a r c s i n x ≈ a r c t a n x ≈ e x − 1 ≈ l n ( 1 + x ) x\approx sinx \approx tanx \approx arcsinx \approx arctanx \approx e^x-1 \approx ln(1+x) xsinxtanxarcsinxarctanxex1ln(1+x)
lim ⁡ β α = 0 , β 是比 α 较高阶的无穷小量 \lim\dfrac{\beta}{\alpha}=0,\beta是比\alpha较高阶的无穷小量 limαβ=0,β是比α较高阶的无穷小量
lim ⁡ β α = c ≠ 1 , β 是与 α 同阶的无穷小量 \lim\dfrac{\beta}{\alpha}=c\neq1,\beta是与\alpha同阶的无穷小量 limαβ=c=1,β是与α同阶的无穷小量
lim ⁡ β α = 1 , β 是与 α 等价的无穷小量 \lim\dfrac{\beta}{\alpha}=1,\beta是与\alpha等价的无穷小量 limαβ=1,β是与α等价的无穷小量
lim ⁡ β α = ∞ , β 是与 α 较低阶的无穷小量 \lim\dfrac{\beta}{\alpha}=\infty,\beta是与\alpha较低阶的无穷小量 limαβ=,β是与α较低阶的无穷小量

两个重要极限

lim ⁡ x → 0 s i n x x = 1 \lim\limits_{x\rightarrow 0}\dfrac{sinx}{x}=1 x0limxsinx=1
lim ⁡ x → ∞ ( 1 + 1 n ) n = e \lim\limits_{x\rightarrow \infty}(1+\dfrac{1}{n})^n=e xlim(1+n1)n=e
lim ⁡ x → 0 ( 1 + 1 x ) 1 n = e \lim\limits_{x\rightarrow 0}(1+\dfrac{1}{x})^{\dfrac{1}{n}}=e x0lim(1+x1)n1=e
求极限,分母不为零的可以直接带入分母=0 求解

函数连续性

lim ⁡ Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 \lim\limits_{\Delta x\rightarrow 0}[f(x_0+\Delta x)-f(x_0)]=0 Δx0lim[f(x0+Δx)f(x0)]=0
lim ⁡ x → x 0 f ( x ) = f ( x 0 ) , y 在点 x 0 处连续 \lim\limits_{x\rightarrow x_0}f(x)=f(x_0),y在点x_0处连续 xx0limf(x)=f(x0)y在点x0处连续

导数定义公式

f ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f(x_0)=\lim\limits_{\Delta x\rightarrow 0}\dfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x0)=Δx0limΔxf(x0+Δx)f(x0)
f ( x 0 ) = lim ⁡ Δ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f(x_0)=\lim\limits_{\Delta x\rightarrow x_0}\dfrac{f(x)-f(x_0)}{x-x_0} f(x0)=Δxx0limxx0f(x)f(x0)
f ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + h ) − f ( x ) h f(x_0)=\lim\limits_{\Delta x\rightarrow 0}\dfrac{f(x_0+h)-f(x)}{h} f(x0)=Δx0limhf(x0+h)f(x)

导数几何意义

曲线 y = f ( x ) 在点 M ( x 0 , y 0 ) 处: 曲线y=f(x)在点M(x_0,y_0)处: 曲线y=f(x)在点M(x0,y0)处:
切线方程: y − y 0 = f ′ ( x ) ( x − x 0 ) ,斜率 k = f ′ ( x ) 切线方程:y-y_0=f'(x)(x-x_0),斜率k=f'(x) 切线方程:yy0=f(x)(xx0),斜率k=f(x)
法线方程: y − y 0 = − 1 f ′ ( x ) ( x − x 0 ) ,斜率 k = − 1 f ′ ( x ) 法线方程:y-y_0=-\dfrac{1}{f'(x)}(x-x_0),斜率k=-\dfrac{1}{f'(x)} 法线方程:yy0=f(x)1(xx0),斜率k=f(x)1

函数间断点

f ( x ) 在点 x 0 处不连续 f(x)在点x_0处不连续 f(x)在点x0处不连续
x 0 处 f ( x ) 没有定义, x 0 处 f ( x ) 的极限值不存在 x_0处f(x)没有定义,x_0处f(x)的极限值不存在 x0f(x)没有定义,x0f(x)的极限值不存在
x 0 处有定义 lim ⁡ x → x 0 f ( x ) 存在,但 lim ⁡ x → x 0 f ( x ) ≠ f ( x 0 ) x_0处有定义\lim\limits_{x\rightarrow x_0}f(x)存在 ,但\lim\limits_{x\rightarrow x_0}f(x)\neq f(x_0) x0处有定义xx0limf(x)存在,但xx0limf(x)=f(x0)
通常分母为 0 时无意义

求导方法

( c ) ′ = 0 (c)'=0 (c)=0
( x a ) ′ = a x a − 1 (x^a)'=ax^{a-1} (xa)=axa1
( l o g a x ) ′ = 1 x l n a ( a > 0 , a ≠ 1 ) (log_ax)'=\dfrac{1}{xlna}(a>0,a\neq1) (logax)=xlna1(a>0,a=1)
( l n x ) ′ = 1 x (lnx)'=\dfrac{1}{x} (lnx)=x1
( a x ) ′ = a x l n a (a^x)'=a^xlna (ax)=axlna
( e x ) ′ = e x (e^x)'=e^x (ex)=ex
( s i n x ) ′ = c o s x (sinx)'=cosx (sinx)=cosx
( c o s x ) ′ = − s i n x (cosx)'=-sinx (cosx)=sinx
( t a n x ) ′ = s e c 2 x (tanx)'=sec^2x (tanx)=sec2x
( c o t x ) ′ = − c s c 2 x (cotx)'=-csc^2x (cotx)=csc2x
( s e c x ) ′ = s e c x t a n x (secx)'=secxtanx (secx)=secxtanx
( c s c x ) ′ = − c s c c o t x (cscx)'=-csccotx (cscx)=csccotx
( a r c s i n x ) ′ = 1 1 − x 2 ( − 1 < x < 1 ) (arcsinx)'=\dfrac{1}{\sqrt {1-x^2}}(-1<x<1) (arcsinx)=1x2 1(1<x<1)
( a r c c o s x ) ′ = − 1 1 − x 2 ( − 1 < x < 1 ) (arccosx)'=-\dfrac{1}{\sqrt {1-x^2}}(-1<x<1) (arccosx)=1x2 1(1<x<1)
( a r c t a n x ) ′ = 1 1 + x 2 (arctanx)'=\dfrac{1}{1+x^2} (arctanx)=1+x21
( a r c c o t x ) ′ = − 1 1 + x 2 (arccotx)'=-\dfrac{1}{1+x^2} (arccotx)=1+x21
( u ± v ) ′ = u ′ ± v ′ (u\pm v)'=u'\pm v' (u±v)=u±v
( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+ uv' (uv)=uv+uv
( c u ) ′ = c u ′ (cu)'=cu' (cu)=cu
( u v ) ′ = u ′ v − u v ′ v 2 ( v ≠ 0 ) (\dfrac{u}{v})'=\dfrac{u'v- uv'}{v^2}(v\neq 0) (vu)=v2uvuv(v=0)

复合函数求导

y = ( 2 + x ) 3 , y ′ = 3 ( 2 + x ) 2 ∗ ( 2 + x ) ′ = 3 ( 2 + x ) 2 y=(2+x)^3,y'=3(2+x)^2*(2+x)'=3(2+x)^2 y=(2+x)3,y=3(2+x)2(2+x)=3(2+x)2

高阶求导

d 2 y d x 2 = d d x ( d y d x ) \dfrac{d^2y}{dx^2}=\dfrac{d}{dx}(\dfrac{dy}{dx}) dx2d2y=dxd(dxdy)
根据分母来, x 2 对 x 求导两次, x y 对 x 求导在对 y 求导 根据分母来,x^2对x求导两次,xy对x求导在对y求导 根据分母来,x2x求导两次,xyx求导在对y求导

隐函数求导

F ( x , y ) = 0 的两端同时对 x 求导,再利用复合函数求导 F(x,y)=0的两端同时对x求导,再利用复合函数求导 F(x,y)=0的两端同时对x求导,再利用复合函数求导
e y = x + y , 求 d y d x = e y ∗ y ′ + 1 + y ′ = y ′ = 1 e y − 1 e^y=x+y,求\dfrac{dy}{dx}=e^y*y'+1+y'=y'=\dfrac{1}{e^y-1} ey=x+y,dxdy=eyy+1+y=y=ey11
左侧 = ( e y ) ′ = e y ∗ y ′ , 右侧 = ( x + y ) ′ = 1 + y ′ 左侧=(e^y)'=e^y*y',右侧=(x+y)'=1+y' 左侧=(ey)=eyy,右侧=(x+y)=1+y

对数求导法

两边同时取对数,在对 x x x求导,得出 y ′ y' y
自然对数,5 的自然对数 l n 5 ln5 ln5
对数性质, a b , l n ( a b ) = b l n a a^b,ln(a^b)=blna ab,ln(ab)=blna
求导 f ( x ) = x 2 x , f ′ ( x ) = 两边取对数 , l n f ( x ) = l n ( x 2 x ) = 2 x l n x 求导f(x)=x^{2x},f'(x)=两边取对数,lnf(x)=ln(x^{2x})=2xlnx 求导f(x)=x2x,f(x)=两边取对数,lnf(x)=ln(x2x)=2xlnx
两边对 x 求导 , 左边 = f ′ ( x ) f ( x ) , 右边 ( 2 x l n x ) ′ = 2 l n x + 2 x ∗ 1 x = 2 l n x + 2 两边对x求导,左边=\dfrac{f'(x)}{f(x)},右边(2xlnx)'=2lnx+2x*\dfrac{1}{x}=2lnx+2 两边对x求导,左边=f(x)f(x),右边(2xlnx)=2lnx+2xx1=2lnx+2
f ′ ( x ) f ( x ) = 2 l n x + 2 , f ′ ( x ) = x 2 x ∗ ( 2 l n x + 2 ) \dfrac{f'(x)}{f(x)}=2lnx+2,f'(x)=x^{2x}*(2lnx+2) f(x)f(x)=2lnx+2,f(x)=x2x(2lnx+2)
所以 f ′ ( x ) = x 2 x ( l n x + 2 ) 所以f'(x)=x^{2x}(lnx+2) 所以f(x)=x2x(lnx+2)

函数的和差积商微分运算公式

u = u ( x ) , v = v ( x ) 可微分 u=u(x),v=v(x)可微分 u=u(x),v=v(x)可微分
d ( c u ) = c d u , d ( u ± v ) = d u ± d v d(cu)=cdu,d(u\pm v)=du\pm dv d(cu)=cdu,d(u±v)=du±dv
d ( u v ) = v d u + u d v , d ( u v ) = v d u − u d v v 2 ( v ≠ 0 ) d(uv)=vdu+udv,d(\dfrac{u}{v})=\dfrac{vdu-udv}{v^2}(v\neq 0) d(uv)=vdu+udv,d(vu)=v2vduudv(v=0)
y = f ( x ) 在 x = x 0 处的微分,记为: d y ∣ x = x 0 y=f(x)在x=x_0处的微分,记为:dy|_{x=x_0} y=f(x)x=x0处的微分,记为:dyx=x0
d y d x = f ′ ( x ) , d y = f ′ ( x ) d x \dfrac{dy}{dx}=f'(x),dy=f'(x)dx dxdy=f(x),dy=f(x)dx

导数的应用

区间 ( a , b ) 内 f ′ ( x ) > 0 , f ( x ) 在 ( a , b ) 递增 区间(a,b)内f'(x)>0,f(x)在(a,b)递增 区间(a,b)f(x)>0,f(x)(a,b)递增
区间 ( a , b ) 内 f ′ ( x ) < 0 , f ( x ) 在 ( a , b ) 递减 区间(a,b)内f'(x)<0,f(x)在(a,b)递减 区间(a,b)f(x)<0,f(x)(a,b)递减

函数的极值

x ≠ x 0 时, f ( x ) < f ( x 0 ) 则 x 0 为极大值点, f ( x 0 ) 为极大值 x\neq x_0时,f(x)<f(x_0)则x_0为极大值点,f(x_0)为极大值 x=x0时,f(x)<f(x0)x0为极大值点,f(x0)为极大值
x ≠ x 0 时, f ( x ) > f ( x 0 ) , x 0 为极小值点 x\neq x_0时,f(x)>f(x_0),x_0为极小值点 x=x0时,f(x)>f(x0)x0为极小值点
极小值存在条件, f ′ ( x 0 ) = 0 , f ′ ( x 0 ) = 0 的点为 f ( x ) 的驻点 极小值存在条件,f'(x_0)=0,f'(x_0)=0的点为f(x)的驻点 极小值存在条件,f(x0)=0,f(x0)=0的点为f(x)的驻点
可导函数的极值点必为驻点 可导函数的极值点必为驻点 可导函数的极值点必为驻点

曲线的凹凸性及拐点

f ′ ( x ) > 0 在 [ a , b ] 上图形是凹的 f'(x)>0在[a,b]上图形是凹的 f(x)>0[a,b]上图形是凹的
f ′ ( x ) < 0 在 [ a , b ] 上图形是凸的 f'(x)<0在[a,b]上图形是凸的 f(x)<0[a,b]上图形是凸的
曲线拐点为凹凸分界点, 分母不为 0 的,定义域为 ( − ∞ , ∞ ) (-\infty,\infty) (,)

曲线的水平、铅直渐近线方程

求水平渐近线方程就是 x → ∞ x\rightarrow\infty x的极值
求铅直线渐近方程,分母=0 求 x 的值就是曲线的方程

不定积分性质及公式

∫ f ( x ) d x = F ( x ) + c \int f(x)dx=F(x)+c f(x)dx=F(x)+c
[ ∫ f ( x ) d x ] ′ = f ( x ) , d ∫ f ( x ) d x = f ( x ) d x [\int f(x)dx]'=f(x),d\int f(x)dx=f(x)dx [f(x)dx]=f(x),df(x)dx=f(x)dx
∫ d F ( x ) = F ( x ) + c , ∫ F ′ ( x ) d x = F ( x ) + c \int dF(x)=F(x)+c,\int F'(x)dx=F(x)+c dF(x)=F(x)+c,F(x)dx=F(x)+c
∫ k f ( x ) d x = k ∫ f ( x ) d x \int kf(x)dx=k\int f(x)dx kf(x)dx=kf(x)dx
∫ [ f ( x ) ± g ( x ) ] d x = ∫ f ( x ) d x ± ∫ g ( x ) d x \int [f(x)\pm g(x)]dx=\int f(x)dx\pm \int g(x)dx [f(x)±g(x)]dx=f(x)dx±g(x)dx
∫ x a d x = 1 a + 1 x a + 1 + c , ( a ≠ 1 ) \int x^adx=\dfrac{1}{a+1}x^{a+1}+c,(a\neq 1) xadx=a+11xa+1+c,(a=1)
∫ 1 x d x = l n ∣ x ∣ + c \int \dfrac{1}{x}dx=ln|x|+c x1dx=lnx+c
∫ a x d x = a x l n a + c , ( a > 0 , a ≠ 1 ) \int a^xdx=\dfrac{a^x}{lna}+c,(a>0,a\neq1) axdx=lnaax+c,(a>0,a=1)
∫ e x d x = e x + c \int e^xdx=e^x+c exdx=ex+c
∫ s i n x d x = − c o s x + c \int sinxdx=-cosx+c sinxdx=cosx+c
∫ c o s x d x = s i n x + c \int cosxdx=sinx+c cosxdx=sinx+c
∫ s e c 2 x d x = t a n x + c \int sec^2xdx=tanx+c sec2xdx=tanx+c
∫ c s c 2 x d x = − c o t x + c \int csc^2xdx=-cotx+c csc2xdx=cotx+c
∫ 1 1 − x 2 d x = a r c s i n x + c \int \dfrac{1}{\sqrt{1-x}^2}dx=arcsinx+c 1x 21dx=arcsinx+c
∫ 1 1 + x 2 d x = a r c t a n x + c \int \dfrac{1}{1+x^2}dx=arctanx+c 1+x21dx=arctanx+c
∫ s e c x t a n x d x = s e c x + c \int secxtanxdx=secx+c secxtanxdx=secx+c
∫ c s c x c o t x d x = − c s c x + c \int cscxcotxdx=-cscx+c cscxcotxdx=cscx+c

求不定积分的常用方法

换元法(凑微分法)
u = v ( x ) , F [ v ( x ) ] 是 f [ v ( x ) ] v ′ x 的原函数 u=v(x),F[v(x)]是f[v(x)]v'x的原函数 u=v(x),F[v(x)]f[v(x)]vx的原函数
∫ f [ v ( x ) ] v ′ ( x ) d x = F [ v ( x ) ] + c \int f[v(x)]v'(x)dx=F[v(x)]+c f[v(x)]v(x)dx=F[v(x)]+c
分部积分法
∫ u d v = u v − ∫ v d u \int udv=uv-\int vdu udv=uvvdu

定积分

∫ a b k f ( x ) d x = k ∫ a b f ( x ) d x \int_{a}^{b}kf(x)dx=k\int_{a}^{b}f(x)dx abkf(x)dx=kabf(x)dx
∫ a b [ f ( x ) d x ± g ( x ) ] d x = ∫ a b f ( x ) d x ± ∫ a b g ( x ) d x \int_{a}^{b}[f(x)dx\pm g(x)]dx=\int_{a}^{b}f(x)dx\pm \int_{a}^{b}g(x)dx ab[f(x)dx±g(x)]dx=abf(x)dx±abg(x)dx
∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx abf(x)dx=acf(x)dx+cbf(x)dx
牛顿-莱布尼茨公式
∫ a b f ( x ) d x = F ( x ) ∣ a b = F ( b ) − F ( a ) \int_{a}^{b}f(x)dx=F(x)|_{a}^{b}=F(b)-F(a) abf(x)dx=F(x)ab=F(b)F(a)

洛必达法则

是否符合“ 0 0 ”或“ ∞ ∞ ” 是否符合“\dfrac{0}{0}”或“\dfrac{\infty}{\infty}” 是否符合00
对分子分母同时求导如何还是,那么在求导直至不是“ 0 0 ”或“ ∞ ∞ ” 对分子分母同时求导如何还是,那么在求导直至不是“\dfrac{0}{0}”或“\dfrac{\infty}{\infty}” 对分子分母同时求导如何还是,那么在求导直至不是00
出现分母不为 0 时就可以直接带入求解 出现分母不为0时就可以直接带入求解 出现分母不为0时就可以直接带入求解

多元函数偏导数

求 f ( x , y ) 对 y 的偏导数 , 将 x 看为常数,对 y 求导 求f(x,y)对y的偏导数,将x看为常数,对y求导 f(x,y)y的偏导数,x看为常数,对y求导
求 f ( x , y ) 对 x 的偏导数 , 将 y 看为常数,对 x 求导 求f(x,y)对x的偏导数,将y看为常数,对x求导 f(x,y)x的偏导数,y看为常数,对x求导

二阶偏导数

∂ d x ( ∂ z ∂ x ) = ∂ 2 z ∂ x = z x ′ ′ x = f x x ′ ( x , y ) \dfrac{\partial}{dx}(\dfrac{\partial z}{\partial x})=\dfrac{\partial^2 z}{\partial x}=z^{''}_xx=f'_{xx}(x,y) dx(xz)=x2z=zx′′x=fxx(x,y)
∂ d x ( ∂ z ∂ x ) = ∂ 2 z ∂ x ∂ y = z x ′ ′ y = f x y ′ ′ ( x , y ) \dfrac{\partial}{dx}(\dfrac{\partial z}{\partial x})=\dfrac{\partial^2 z}{\partial x \partial y}=z^{''}_xy=f''_{xy}(x,y) dx(xz)=xy2z=zx′′y=fxy′′(x,y)
∂ d x ( ∂ z ∂ y ) = ∂ 2 z ∂ y ∂ x = z y ′ ′ x = f y x ′ ′ ( x , y ) \dfrac{\partial}{dx}(\dfrac{\partial z}{\partial y})=\dfrac{\partial^2 z}{\partial y \partial x}=z^{''}_yx=f''_{yx}(x,y) dx(yz)=yx2z=zy′′x=fyx′′(x,y)
∂ ∂ ( ∂ z ∂ y ) = ∂ 2 z ∂ y 2 = z y y ′ ′ = f y y ′ ′ ( x , y ) \dfrac{\partial}{\partial}(\dfrac{\partial z}{\partial y})=\dfrac{\partial^2 z}{\partial y^2}=z^{''}_{yy}=f''_{yy}(x,y) (yz)=y22z=zyy′′=fyy′′(x,y)

全微分

d z = ∂ f d x d x + ∂ f d y d y dz=\dfrac{\partial f}{dx}dx+\dfrac{\partial f}{dy}dy dz=dxfdx+dyfdy
u = f ( x , y , z ) 可微 , d u = ∂ f d x d x + ∂ f d y d y + ∂ f d z d z u=f(x,y,z)可微,du=\dfrac{\partial f}{dx}dx+\dfrac{\partial f}{dy}dy+\dfrac{\partial f}{dz}dz u=f(x,y,z)可微,du=dxfdx+dyfdy+dzfdz
求 x,y,z 的偏导数的总和

二元函数极值

函数 z = f ( x 0 ) 在点 ( x 0 , y 0 ) 的某领域内连续,有一阶二阶偏导数,且, f ′ x ( x 0 , y 0 ) = 0 函数z=f(x_0)在点(x_0,y_0)的某领域内连续,有一阶二阶偏导数,且,f'x(x_0,y_0)=0 函数z=f(x0)在点(x0,y0)的某领域内连续,有一阶二阶偏导数,且,fx(x0,y0)=0
设 f x x ′ ′ ( x 0 , y 0 ) = A , f x y ′ ′ ( x 0 , y 0 ) = B , f y y ′ ′ ( x 0 , y 0 ) = C 设f''_{xx}(x_0,y_0)=A,f''_{xy}(x_0,y_0)=B,f''_{yy}(x_0,y_0)=C fxx′′(x0,y0)=Afxy′′(x0,y0)=Bfyy′′(x0,y0)=C
B 2 − A C < 0 在点 ( x 0 , y 0 ) 处取得极值 , 当 A < 0 有极大值 , , 当 A > 0 有极小值 B^2-AC<0在点(x_0,y_0)处取得极值,当A<0有极大值,,当A>0有极小值 B2AC<0在点(x0,y0)处取得极值,A<0有极大值,,A>0有极小值
B 2 − A C = 0 在点 ( x 0 , y 0 ) 处极值不确定 B^2-AC=0在点(x_0,y_0)处极值不确定 B2AC=0在点(x0,y0)处极值不确定
B 2 − A C > 0 在点 ( x 0 , y 0 ) 处无极值 B^2-AC>0在点(x_0,y_0)处无极值 B2AC>0在点(x0,y0)处无极值

向量代数与空间解析几何 2 _2 2

平面一般方程 A x + B x + C z + d = 0 平面一般方程Ax+Bx+Cz+d=0 平面一般方程Ax+Bx+Cz+d=0
x , y , z 的系数就是法线向量 n 的坐标 , n = A , B , C x,y,z的系数就是法线向量n的坐标,n={A,B,C} x,y,z的系数就是法线向量n的坐标,n=A,B,C

二次曲面

球面 : ( x − a ) 2 + ( y − b ) 2 + ( z − c ) 2 = R 2 ,球心 R = ( a , b , c ) 球面:(x-a)^2+(y-b)^2+(z-c)^2=R^2,球心R=(a,b,c) 球面:(xa)2+(yb)2+(zc)2=R2,球心R=(a,b,c)
椭球面 : x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 椭球面:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1 椭球面:a2x2+b2y2+c2z2=1
圆柱面 : x 2 + y 2 = R 2 圆柱面:x^2+y^2=R^2 圆柱面:x2+y2=R2
椭圆柱面 : x 2 a 2 + y 2 b 2 = 1 椭圆柱面:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 椭圆柱面:a2x2+b2y2=1
双曲柱面 : x 2 a 2 − y 2 b 2 = − 1 双曲柱面:\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=-1 双曲柱面:a2x2b2y2=1
抛物柱面 : x 2 − 2 p y = 0 , ( p > 0 ) 抛物柱面:x^2-2py=0,(p>0) 抛物柱面:x22py=0,(p>0)
旋转抛物面 : z = x 2 + y 2 旋转抛物面:z=x^2+y^2 旋转抛物面:z=x2+y2
圆锥面 : x 2 + y 2 − z 2 = 0 , x 2 a 2 + y 2 b 2 − z 2 c 2 = 0 表示顶点在原点 圆锥面:x^2+y^2-z^2=0,\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}-\dfrac{z^2}{c^2}=0表示顶点在原点 圆锥面:x2+y2z2=0,a2x2+b2y2c2z2=0表示顶点在原点

微分方程

d y d x + p ( x ) y = q ( x ) 的解法, y = e ∫ p ( x ) d x [ ∫ q ( x ) e p ( x ) d x d x ] + c \dfrac{dy}{dx}+p(x)y=q(x)的解法,y=e^{\int p(x)dx}[\int q(x)e^{p(x)dx}dx]+c dxdy+p(x)y=q(x)的解法,y=ep(x)dx[q(x)ep(x)dxdx]+c
求微分方程通解 , y x = y ′ , ( 一阶线性微分方程 ) 求微分方程通解,\dfrac{y}{x}=y',(一阶线性微分方程) 求微分方程通解,xy=y,(一阶线性微分方程)
二阶常系数线性微分方程
y ′ ′ + p y ′ + q y = 0 的通解形式 y''+py'+qy=0的通解形式 y′′+py+qy=0的通解形式
特征方程 r 2 + p r + q = 0 的根 r 1 , r 2 特征方程r^2+pr+q=0的根r_1,r_2 特征方程r2+pr+q=0的根r1,r2
Δ = p 2 − 4 q > 0 , 两个不相等的实根 , r 1 , r 2 , y = C 1 e r 1 x + C 2 e r 2 x \Delta =p^2-4q>0,两个不相等的实根,r_1,r_2,y=C_1e^{r_1x}+C_2e^{r_2x} Δ=p24q>0,两个不相等的实根,r1,r2,y=C1er1x+C2er2x
Δ = p 2 − 4 q = 0 , 两个相等的实根 , r 1 , r 2 , y = ( C 1 + C 2 x ) e r 1 x \Delta =p^2-4q=0,两个相等的实根,r_1,r_2,y=(C_1+C_2x)e^{r_1x} Δ=p24q=0,两个相等的实根,r1,r2,y=(C1+C2x)er1x
Δ = p 2 − 4 q < 0 , 一对共轭复根, , r 1 , r 2 = α ± β i , y = e a x ( C 1 c o s β x + C 2 s i n β x ) \Delta =p^2-4q<0,一对共轭复根,,r_1,r_2=\alpha\pm\beta i,y=e^{ax}(C_1cos\beta x+C_2sin\beta x) Δ=p24q<0,一对共轭复根,,r1,r2=α±βi,y=eax(C1cosβx+C2sinβx)
若 y = c 1 y 1 + C 2 y 2 为对应的齐次方根的通解, y ∗ 为非齐次方根的特解 若y=c_1y_1+C_2y_2为对应的齐次方根的通解,y^*为非齐次方根的特解 y=c1y1+C2y2为对应的齐次方根的通解,y为非齐次方根的特解
则 C 1 y 1 + C 2 y 2 + y ∗ 为非齐次方程的通解 则C_1y_1+C_2y_2+y^*为非齐次方程的通解 C1y1+C2y2+y为非齐次方程的通解
(先求根 r 1 , r 2 , 设 y ∗ = A e x , 得 A = − 1 2 , y ∗ = − 1 2 e x ) (先求根r_1,r_2,设y^*=Ae^x,得A=-\dfrac{1}{2},y^*=-\dfrac{1}{2}e^x) (先求根r1,r2,y=Aex,A=21,y=21ex
y ′ ′ − y ′ − 2 y = e x 的通解 y''-y'-2y=e^x的通解 y′′y2y=ex的通解
r 2 − r − 2 = 0 , r 1 = − 1 , r 2 = 2 r^2-r-2=0,r_1=-1,r_2=2 r2r2=0,r1=1,r2=2
齐次方程通解 y = C 1 e − x + C 2 e 2 x 齐次方程通解y=C_1e^{-x}+C_2e^{2x} 齐次方程通解y=C1ex+C2e2x
设原特解 y ∗ = A e x , 带入的 A = − 1 2 , 所以 Y y ∗ = − 1 2 e x 设原特解y^*=Ae^x,带入的A=-\dfrac{1}{2},所以Yy^*=-\dfrac{1}{2}e^x 设原特解y=Aex,带入的A=21,所以Yy=21ex
A e x ′ ′ − A e x ′ − 2 A e x = e x , y = Y + y ∗ = C 1 e − x + C 2 e 2 x − 1 2 e x Ae^x {''}-Ae^x{'}-2Ae^x=e^x,y=Y+y^*=C_1e^{-x}+C_2e^{2x}-\dfrac{1}{2}e^x Aex′′Aex2Aex=ex,y=Y+y=C1ex+C2e2x21ex
y ′ ′ + y ′ + − 6 y = 0 的通解 , r 2 − 5 r − 6 = 0 , r 1 = − 1 , r 2 = 6 y''+y'+-6y=0的通解,r^2-5r-6=0,r_1=-1,r_2=6 y′′+y+6y=0的通解,r25r6=0,r1=1,r2=6
y = C 1 e − x + C 2 e 6 x ( C 1 , C 2 为任意常数 ) y=C_1e^{-x}+C_2e^{6x}(C_1,C_2为任意常数) y=C1ex+C2e6x(C1,C2为任意常数)

无穷级数

lim ⁡ n → ∞ S n = S , 级数 ∑ n − 1 ∞ , U n 收敛,极限值 S ,记为 ∑ n = 1 ∞ U n = S \lim\limits_{n\rightarrow\infty}S_n=S,级数\sum_{n-1}^{\infty},U_n收敛,极限值S,记为\sum_{n=1}^{\infty}U_n=S nlimSn=S,级数n1,Un收敛,极限值S,记为n=1Un=S
若 lim ⁡ n → ∞ S n 不存在,级数发散 若\lim\limits_{n\rightarrow\infty}Sn不存在,级数发散 nlimSn不存在,级数发散
级数 ∑ n − 1 ∞ U n 收敛,则 lim ⁡ n → ∞ U n = 0 , 得若 lim ⁡ n → ∞ U n ≠ 0 , 级数 ∑ n = 1 ∞ U n 一定发散 级数\sum_{n-1}^{\infty}Un收敛,则\lim\limits_{n\rightarrow\infty}Un=0,得若\lim\limits_{n\rightarrow\infty}Un\neq0,级数\sum_{n=1}^{\infty}Un一定发散 级数n1Un收敛,则nlimUn=0,得若nlimUn=0,级数n=1Un一定发散
级数 ∑ n = 1 ∞ U n = 0 , 级数收敛性不能判断 级数\sum_{n=1}^{\infty}Un=0,级数收敛性不能判断 级数n=1Un=0,级数收敛性不能判断
级数 ∑ n = 1 ∞ 1 n 发散,则级数 ∑ n = 1 ∞ 1 n 2 收敛 级数\sum_{n=1}^{\infty}\dfrac{1}{n}发散,则级数\sum_{n=1}^{\infty}\dfrac{1}{n^2}收敛 级数n=1n1发散,则级数n=1n21收敛
级数 ∑ n = 1 ∞ ∣ U n ∣ 收敛,则 ∑ n = 1 ∞ U n 一定收敛, ∑ n = 1 ∞ U n 为绝对收敛 级数\sum_{n=1}^{\infty}|U_n|收敛,则\sum_{n=1}^{\infty}U_n一定收敛,\sum_{n=1}^{\infty}U_n为绝对收敛 级数n=1Un收敛,则n=1Un一定收敛,n=1Un为绝对收敛
级数 ∑ ∗ n = 1 ∞ ∣ U n ∣ 发散,但级数 ∑ ∗ n = 1 ∞ U ∗ n 收敛,此事收敛为条件收敛 级数\sum*{n=1}^{\infty}|U_n|发散,但级数\sum*{n=1}^{\infty}U*n 收敛,此事收敛为条件收敛 级数n=1Un发散,但级数n=1Un收敛,此事收敛为条件收敛
∑ ∗ n = 1 ∞ U ∗ n 收敛时, ∑ ∗ n = 1 ∞ V ∗ n 必收敛 , ∑ ∗ n = 1 ∞ U ∗ n 发散时, ∑ ∗ n = 1 ∞ V ∗ n 必发散 \sum*{n=1}^{\infty}U*n 收敛时,\sum*{n=1}^{\infty}V*n 必收敛,\sum*{n=1}^{\infty}U*n 发散时,\sum*{n=1}^{\infty}V*n 必发散 n=1Un收敛时,n=1Vn必收敛,n=1Un发散时,n=1Vn必发散
lim ⁡ n → ∞ U n + 1 U n = p { p < 1 时收敛 p > 1 时发散 p = 1 时不定   \begin{align*} \lim\limits_{n\rightarrow\infty}\dfrac{U_n+1}{U_n}=p \begin{cases} p<1时收敛\\ p>1时发散\\ p=1时不定 \end{cases}\ \end{align*} nlimUnUn+1=p p<1时收敛p>1时发散p=1时不定 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值