奈曼皮尔逊N-P(Neyman-Pearson)定理

文章目录


N-P定理

对于一个给定的 P F A = α P_{FA}=\alpha PFA=α,使 P D P_{D} PD最大的判决为
L ( x ) = p ( x ; H 1 ) p ( x ; H 0 ) > γ L(\mathbf{x})=\frac{p\left(\mathbf{x} ;H_{1}\right)}{p\left(\mathbf{x} ; H_{0}\right)}>\gamma L(x)=p(x;H0)p(x;H1)>γ
其中,门限 γ \gamma γ
P F A = ∫ { x : L ( x ) > γ } p ( x ; H 0 ) d x = α P_{F A}=\int_{\{\mathbf{x}: L(x)>\gamma\}} p\left(\mathbf{x} ; H_{0}\right) d \mathbf{x}=\alpha PFA={x:L(x)>γ}p(x;H0)dx=α
求出。


推导

NP定理的定义是:对于固定 P F A P_{FA} PFA使 P D P_{D} PD最大的判决,即
 max  P D  s.t.  P F A = α \text { max } P_{D} \text{ s.t. } P_{FA} = \alpha  max PD s.t. PFA=α
采用拉格朗日乘子,构造目标函数
F = P D + λ ( P F A − α ) = ∫ R 1 p ( x ; H 1 ) d x + λ ( ∫ R 1 p ( x ; H 0 ) d x − α ) = ∫ R 1 ( p ( x ; H 1 ) + λ p ( x ; H 0 ) ) d x − λ α \begin{aligned} F&=P_{D}+\lambda\left(P_{F A}-\alpha\right) \\ &=\int_{R_{1}} p\left(\mathbf{x} ; \mathcal{H}_{1}\right) d \mathbf{x}+\lambda\left(\int_{R_{1}} p\left(\mathbf{x} ; \mathcal{H}_{0}\right) d \mathbf{x}-\alpha\right) \\ &=\int_{R_{1}}\left(p\left(\mathbf{x} ; \mathcal{H}_{1}\right)+\lambda p\left(\mathbf{x} ; \mathcal{H}_{0}\right)\right) d \mathbf{x}-\lambda \alpha \end{aligned} F=PD+λ(PFAα)=R1p(x;H1)dx+λ(R1p(x;H0)dxα)=R1(p(x;H1)+λp(x;H0))dxλα
为了使目标函数F最大,应该在 x ∈ R 1 x \in R1 xR1的情况下让 f ( x ) f(\mathbf{x}) f(x)大于零
f ( x ) = p ( x ; H 1 ) + λ p ( x ; H 0 ) > 0  ,  x ∈ R 1 f(\mathbf{x})=p\left(\mathbf{x} ; \mathcal{H}_{1}\right)+\lambda p\left(\mathbf{x} ; \mathcal{H}_{0}\right)>0 \text{ , } \mathbf{x} \in R1 f(x)=p(x;H1)+λp(x;H0)>0  xR1
在这里插入图片描述

此时在 R 1 R1 R1域对 f ( x ) f(\mathbf{x}) f(x)的积分最大。
所以在判决时,若
p ( x ; H 1 ) p ( x ; H 0 ) > − λ \frac{p\left(\mathbf{x} ; \mathcal{H}_{1}\right)}{p\left(\mathbf{x} ; \mathcal{H}_{0}\right)}>-\lambda p(x;H0)p(x;H1)>λ
判为 H 1 H_{1} H1
γ = − λ \gamma=-\lambda γ=λ,得到
p ( x ; H 1 ) p ( x ; H 0 ) > γ \frac{p\left(\mathbf{x} ; \mathcal{H}_{1}\right)}{p\left(\mathbf{x} ; \mathcal{H}_{0}\right)}>\gamma p(x;H0)p(x;H1)>γ
H 1 H_{1} H1。其中门限 γ > 0 \gamma>0 γ>0 P F A = α P_{FA}=\alpha PFA=α求得
P F A = ∫ { x : L ( x ) > γ } p ( x ; H 0 ) d x = α P_{F A}=\int_{\{\mathbf{x}: L(x)>\gamma\}} p\left(\mathbf{x} ; H_{0}\right) d \mathbf{x}=\alpha PFA={x:L(x)>γ}p(x;H0)dx=α

参考《统计信号处理基础》

  • 2
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
奈曼-皮尔逊准则是用来评估信号检测性能的方法之一。该准则基于概率论和统计学原理,能够帮助我们优化分类器的阈值选择,从而实现更准确的信号检测。 在MATLAB中,我们可以使用以下代码来实现奈曼-皮尔逊准则: ```matlab % 假设我们有两个信号样本集,x1和x2,它们分别表示信号的观测值在假设H1和H0下的概率密度函数(PDF), % 我们需要设置一个阈值T来决定信号的分类,T的选择会影响信号检测的性能。 % 计算信号样本集的PDF [m1, v1] = normfit(x1); % 假设信号为高斯分布,使用normfit()函数估计均值m1和方差v1 [m2, v2] = normfit(x2); % 选择优化的阈值T % 根据奈曼-皮尔逊准则,我们需要找到一个阈值T使得满足两个条件: % 1. 假设H0下信号大于T的观测概率+ 假设H1下信号小于T的观测概率= Pfa(假阳性概率) % 2. 假设H1下信号大于T的观测概率= Pd(检测概率) % 其中Pfa和Pd是我们可以事先确定的性能指标。 % 根据信号的高斯分布特性,我们可以使用概率密度函数的积分来计算这两个条件: syms t; pfa = int(normpdf(t, m1, v1), t, T, Inf) + int(normpdf(t, m2, v2), t, T, Inf); pd = int(normpdf(t, m2, v2), t, T, Inf); % 为了找到最优的阈值T,我们可以采用迭代的方式来搜索最大pd值对应的阈值T: T_opt = 0; % 初始化最优阈值为0 pd_max = 0; % 初始化最大pd值为0 step = 0.1; % 设置步长 for T = min([x1,x2]):step:max([x1,x2]) % 在信号样本集的最小值和最大值范围内搜索 pfa_t = int(normpdf(t, m1, v1), t, T, Inf) + int(normpdf(t, m2, v2), t, T, Inf); pd_t = int(normpdf(t, m2, v2), t, T, Inf); % 更新最优阈值和最大pd值 if pd_t > pd_max && pfa_t <= Pfa_threshold % 只更新当pfa_t小于指定的阈值时的最大pd值 pd_max = pd_t; T_opt = T; end end % 输出结果 disp(['最优阈值T_opt = ', num2str(T_opt)]); disp(['最大检测概率Pd_max = ', num2str(pd_max)]); ``` 这段代码中,我们首先使用`normfit()`函数估计信号的均值和方差,并利用`normpdf()`函数计算概率密度函数。然后,我们根据奈曼-皮尔逊准则,通过迭代搜索的方式找到最大检测概率对应的最优阈值T。 需要注意的是,代码中的Pfa_threshold是我们可以事先确定的假阳性概率阈值。根据应用需求,我们可以根据信号检测的可靠性要求设定该阈值。 以上就是关于奈曼-皮尔逊准则的MATLAB代码实现,希望能对你有所帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值