UA MATH567 高维统计I 概率不等式1 Hoeffding不等式与Chernoff不等式

本文介绍了概率不等式中的Hoeffding不等式和Chernoff不等式,这两种不等式在概率集中度理论中具有重要意义。通过Hoeffding不等式证明的特殊情况,展示了其适用于对称Bernoulli分布的随机变量,并给出了Chernoff不等式的应用,特别是在统计学习和Boosting中的应用。
摘要由CSDN通过智能技术生成

UA MATH567 高维统计I 概率不等式1 Hoeffding不等式与Chernoff不等式

MATH 564系列我们已经介绍了几个基本的概率不等式:Markov不等式、Chebyshev不等式、Chernoff不等式,这一类不等式有一个共同的名字,叫concentration inequalities,因为它们反映的是概率集中到分布的中心(比如均值)的程度,所以我觉得翻译成集中度不等式是还可以的,中文的wiki用的是集中不等式,我觉得含义也差不多。在概率不等式0中我们讨论了Chebyshev不等式,它在大样本时非常不sharp,所以这一讲的目标是基于Markov不等式推出更sharp一点的不等式,也就是Hoeffding不等式与Chernoff不等式。

Hoeffding不等式

假设 X i ∈ [ m i , M i ] , i = 1 , ⋯   , N X_i \in [m_i,M_i],i=1,\cdots,N Xi[mi,Mi],i=1,,N, ∀ t > 0 \forall t>0 t>0, 下面的不等式被称为Hoeffding不等式,
P ( ∑ i = 1 N ( X i − E X i ) ≥ t ) ≤ exp ⁡ ( − 2 t 2 ∑ i = 1 N ( M i − m i ) 2 ) P \left( \sum_{i=1}^N (X_i - EX_i)\ge t \right) \le \exp \left( -\frac{2t^2}{\sum_{i=1}^N (M_i - m_i)^2} \right) P(i=1N(XiEXi)t)exp(i=1N(Mimi)22t2)

完整的证明可以参考Hoeffding (1963)的文章,这里证明一个特殊情况, X i ∼ i i d B e r ( 1 / 2 ) X_i\sim_{iid}Ber(1/2) XiiidBer(1/2) (对称Bernoulli分布):
P ( ∑ i = 1 N a i X i ≥ t ) ≤ exp ⁡ ( − t 2 2 ∑ i = 1 N a i 2 ) P \left( \sum_{i=1}^N a_iX_i\ge t \right) \le \exp \left( -\frac{t^2}{2\sum_{i=1}^N a_i^2} \right) P(i=1NaiXit)exp(2i=1Na

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值