Chernoff bound(切诺夫界)

马尔科夫不等式:

    X为非负随机变量,E(X)存在,对任意t>0,有  Pr[x>t]<=E[X]/t

chernoff 界:

    X1,X2,...,Xn为独立泊松事件,Pr[Xi=1]=pi,X=sigma(i=0,n)Xi,u=E[X],对任意的0<=&<1,有

下界     Pr[X<(1-&)u]<(e-&/(1-&)(1-&))u<e(-u&2/2)

上界     Pr[X>(1+&)u]<=(e&/(1+&)(1+&)u)

 

   X1,X2,...,Xn为离散独立随机变量,E{Xi}=0 |Xi|<=1,i=1,2,...,n,X=sigma(i=1,n)Xi, D{X}=&2

   Pr[|X|>=t]<=2e-u^2/4

   Pr[X>=t]<=e-u^2/4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值