UA MATH523A 实分析3 积分理论例题 讨论原函数的连续性

本文讨论了在(X,M,μ)测度空间中,对于可测函数f>0 μ-a.e.,函数F(t)的连续性与其原函数μ(Bt0)的关系。证明了F(t)在t0处连续的充要条件是μ(Bt0)=0。" 112475463,10535979,设计与实现:可视化H5活动编辑器,"['可视化h5界面编辑器', '营销活动', '策略引擎', '页面编辑']
摘要由CSDN通过智能技术生成

UA MATH5233 实分析A 积分理论例题 讨论原函数的连续性

( X , M , μ ) (X,\mathcal{M},\mu) (X,M,μ)是一个测度空间, f f f是一个可测函数, f > 0 f>0 f>0 μ − a . e . \mu-a.e. μa.e., 定义
F ( t ) = ∫ E t f ( x ) d μ ( x ) , ∀ t ≥ 0 F(t) = \int_{E_t}f(x)d\mu(x),\forall t \ge 0 F(t)=Etf(x)dμ(x),t0

其中 E t = { x : f ( x ) ≥ t } E_t=\{x:f(x) \ge t\} Et={x:f(x)t}。定义 B t = { x : f ( x ) = t } B_t = \{x:f(x)=t\} Bt={x:f(x)=t},证明 F ( t ) F(t) F(t) t 0 t_0 t0处连续的充要条件为 μ ( B t 0 ) = 0 \mu(B_{t_0})=0 μ(Bt0)=0

证明
⇒ \Rightarrow : 如果 t 0 = 0 t_0=0 t0=0,因为 f > 0 f>0 f>0 μ − a . e . \mu-a.e. μa.e.,所以 μ ( B 0 ) = 0 \mu(B_0)=0 μ(B0)=0必然成立。如果 t 0 > 0 t_0>0 t0>0,假设 F ( t ) F(t) F(t) t 0 t_0 t0处连续。 ∀ t > t 0 \forall t >t_0 t>t0, 显然 E t ⊆ E t 0 E_t \subseteq E_{t_0} EtEt0
E t 0 ∖ E t = { x : t 0 ≤ f ( x ) < t } F ( t 0 ) − F ( t ) = ∫ E t 0 ∖ E t f ( x ) d μ ( x ) ≥ t 0 μ ( E t 0 ∖ E t ) E_{t_0}\setminus E_t = \{x:t_0 \le f(x)<t\} \\ F(t_0)-F(t)=\int_{E_{t_0}\setminus E_t}f(x)d\mu(x) \ge t_0\mu(E_{t_0}\setminus E_t) Et0Et={x:t0f(x)<t}F(t0)F(t)=Et0Etf(x)dμ(x)t0μ(Et0Et)

找一个实数列 { t n } \{t_n\} {tn}使得 t n ↓ t 0 t_n \downarrow t_0 tnt0,则 E t 0 ∖ E n ↓ B t 0 E_{t_0}\setminus E_n \downarrow B_{t_0} Et0EnBt0, 根据测度的连续性与 F F F t 0 t_0 t0处的连续性,
0 = lim ⁡ n → ∞ ( F ( t n ) − F ( t 0 ) ) ≥ lim ⁡ n → ∞ t 0 m ( E t 0 ∖ E n ) = t 0 m ( B t 0 ) ≥ 0 0 = \lim_{n \to \infty}(F(t_n)-F(t_0)) \ge \lim_{n \to \infty}t_0m(E_{t_0}\setminus E_n)=t_0m(B_{t_0})\ge0 0=nlim(F(tn)F(t0))nlimt0m(Et0En)=t0m(Bt0)0

所以 μ ( B t 0 ) = 0 \mu(B_{t_0})=0 μ(Bt0)=0

⇐ \Leftarrow : 假设 μ ( B t 0 ) = 0 \mu(B_{t_0})=0 μ(Bt0)=0,找一个实数列 { t n } \{t_n\} {tn}使得 t n ↓ t 0 t_n \downarrow t_0 tnt0
E t 0 ∖ E t n = { x : t 0 ≤ f ( x ) < t n } 0 ≤ F ( t 0 ) − F ( t n ) = ∫ E t 0 ∖ E t n f ( x ) d μ ( x ) < t n μ ( E t 0 ∖ E t n ) E_{t_0}\setminus E_{t_n} = \{x:t_0 \le f(x)<t_n\} \\ 0 \le F(t_0)-F(t_n)=\int_{E_{t_0}\setminus E_{t_n}}f(x)d\mu(x) < t_n\mu(E_{t_0}\setminus E_{t_n}) Et0Etn={x:t0f(x)<tn}0F(t0)F(tn)=Et0Etnf(x)dμ(x)<tnμ(Et0Etn)

注意到
lim ⁡ n → ∞ t n μ ( E t 0 ∖ E t n ) = lim ⁡ n → ∞ t n μ ( B t n ) = 0 \lim_{n \to \infty}t_n\mu(E_{t_0}\setminus E_{t_n}) = \lim_{n \to \infty} t_n\mu(B_{t_n})=0 nlimtnμ(Et0Etn)=nlimtnμ(Btn)=0

因此
0 ≤ F ( t 0 ) − F ( t n ) ≤ t n μ ( B t n ) → 0 , a s   n → ∞ 0 \le F(t_0)-F(t_n) \le t_n\mu(B_{t_n})\to 0,as\ n \to \infty 0F(t0)F(tn)tnμ(Btn)0,as n

或者说 F F F t 0 t_0 t0处右连续。

找一个实数列 { t n } \{t_n\} {tn}使得 t n ↑ t 0 t_n \uparrow t_0 tnt0,则 E t n ∖ E t 0 ↓ ϕ E_{t_n}\setminus E_{t_0} \downarrow \phi EtnEt0ϕ
E t n ∖ E t 0 = { x : t n ≤ f ( x ) < t 0 } 0 ≤ F ( t n ) − F ( t 0 ) = ∫ E t n ∖ E t 0 f ( x ) d μ ( x ) < t 0 μ ( E t n ∖ E t 0 ) E_{t_n} \setminus E_{t_0} = \{x:t_n\le f(x)<t_0\} \\ 0 \le F(t_n)-F(t_0)=\int_{E_{t_n} \setminus E_{t_0}}f(x)d\mu(x) < t_0\mu(E_{t_n} \setminus E_{t_0}) EtnEt0={x:tnf(x)<t0}0F(tn)F(t0)=EtnEt0f(x)dμ(x)<t0μ(EtnEt0)

因为
lim ⁡ n → ∞ t 0 μ ( E t n ∖ E t 0 ) = t 0 μ ( ϕ ) = 0 \lim_{n \to \infty}t_0\mu(E_{t_n} \setminus E_{t_0}) = t_0\mu(\phi)=0 nlimt0μ(EtnEt0)=t0μ(ϕ)=0

因此
0 ≤ F ( t n ) − F ( t 0 ) ≤ t 0 μ ( ϕ ) = 0 , a s   n → ∞ 0 \le F(t_n)-F(t_0) \le t_0\mu(\phi)= 0,as\ n \to \infty 0F(tn)F(t0)t0μ(ϕ)=0,as n

或者说 F F F t 0 t_0 t0处左连续。综上, F F F t 0 t_0 t0处连续。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值