一道积分连续性问题

一道积分连续性问题

证明积分 ∫ 0 ∞ x sin ⁡ ( x 3 − λ x ) d x \int_{0}^{\infty}x\sin(x^3-\lambda x)dx 0xsin(x3λx)dx λ \lambda λ的连续函数.

对于这道题的解法相当暴力,直接进行拆解,然后关于微分对象转换需要技巧,之后对每一部分进行分析.

∫ A B x sin ⁡ ( x 3 − λ x ) d x \int_{A}^{B}x\sin(x^3-\lambda x)dx ABxsin(x3λx)dx
= ∫ A B x [ sin ⁡ ( x 3 ) cos ⁡ ( λ x ) − cos ⁡ ( x 3 ) sin ⁡ ( λ x ) d x ] =\int_{A}^{B}x[\sin\left( x^3\right) \cos(\lambda x)-\cos\left( x^3\right) \sin(\lambda x)dx] =ABx[sin(x3)cos(λx)cos(x3)sin(λx)dx]
= − 1 3 [ ∫ A B cos ⁡ ( λ x ) x d cos ⁡ ( x 3 ) + ∫ A B sin ⁡ ( λ x ) x d sin ⁡ ( x 3 ) ] =-\frac{1}{3}\left[ \int_{A}^{B}\frac{\cos(\lambda x)}{x}d\cos\left( x^3\right) +\int_{A}^{B}\frac{\sin(\lambda x)}{x}d\sin\left( x^3\right)\right] =31[ABxcos(λx)dcos(x3)+ABxsin(λx)dsin(x3)]
= − 1 3 [ ∫ A B cos ⁡ ( λ x ) x cos ⁡ ( x 3 ) − ∫ A B sin ⁡ ( λ x ) x sin ⁡ ( x 3 ) ] x = A x = B + 1 3 ∫ A B [ − λ sin ⁡ ( λ x ) x − cos ⁡ ( λ x ) x 2 ] cos ⁡ ( x 3 ) d x + 1 3 ∫ A B [ λ cos ⁡ ( λ x ) x − sin ⁡ ( λ x ) x 3 ] sin ⁡ ( x 3 ) d x =-\frac{1}{3}\left[ \int_{A}^{B}\frac{\cos(\lambda x)}{x}\cos\left( x^3\right) -\int_{A}^{B}\frac{\sin(\lambda x)}{x}\sin\left( x^3\right)\right]_{x=A}^{x=B}+\frac{1}{3}\int_{A}^{B}\left[\frac{-\lambda\sin(\lambda x)}{x}-\frac{\cos(\lambda x)}{x^2} \right]\cos\left( x^3\right)dx+\frac{1}{3}\int_{A}^{B}\left[\frac{\lambda\cos(\lambda x)}{x}-\frac{\sin(\lambda x)}{x^3} \right]\sin\left( x^3\right)dx =31[ABxcos(λx)cos(x3)ABxsin(λx)sin(x3)]x=Ax=B+31AB[xλsin(λx)x2cos(λx)]cos(x3)dx+31AB[xλcos(λx)x3sin(λx)]sin(x3)dx
= − 1 3 { cos ⁡ ( λ x + x 3 ) x ∣ x = A x = B + ∫ A B cos ⁡ ( λ x − x 3 ) x + I λ , A B } =-\frac{1}{3}\{\frac{\cos(\lambda x+x^3)}{x}|_{x=A}^{x=B}+\int_{A}^{B}\frac{\cos(\lambda x-x^3)}{x}+I_{\lambda,AB}\} =31{xcos(λx+x3)x=Ax=B+ABxcos(λxx3)+Iλ,AB}
下面我们研究一下 I λ , A B I_{\lambda,AB} Iλ,AB
I λ , A B = λ ∫ A B sin ⁡ ( λ x ) x c o s ( x 3 ) d x − λ ∫ A B cos ⁡ ( λ x ) x sin ⁡ ( x 3 ) d x I_{\lambda,AB}=\lambda\int_{A}^{B}\frac{\sin(\lambda x)}{x}cos(x^3)dx-\lambda\int_{A}^{B}\frac{\cos(\lambda x)}{x}\sin(x^3)dx Iλ,AB=λABxsin(λx)cos(x3)dxλABxcos(λx)sin(x3)dx
= λ 3 ∫ A B sin ⁡ ( λ x ) x 3 d sin ⁡ ( x 3 ) + λ 3 ∫ A B cos ⁡ ( λ x ) x 3 d cos ⁡ ( x 3 ) =\frac{\lambda}{3}\int_{A}^{B}\frac{\sin(\lambda x)}{x^3}d\sin(x^3)+\frac{\lambda}{3}\int_{A}^{B}\frac{\cos(\lambda x)}{x^3}d\cos(x^3) =3λABx3sin(λx)dsin(x3)+3λABx3cos(λx)dcos(x3)
= λ 3 { cos ⁡ ( λ x − x 3 ) x 3 ∣ x = A x = B + ∫ A B [ λ cos ⁡ ( λ x ) x 3 − 3 sin ⁡ ( λ x ) x 3 ] sin ⁡ ( x 3 ) − [ − λ sin ⁡ ( λ x ) x 3 − 3 cos ⁡ ( λ x ) x 3 ] cos ⁡ ( x 3 ) d x } =\frac{\lambda}{3}\{\frac{\cos(\lambda x-x^3)}{x^3}|_{x=A}^{x=B}+\int_{A}^{B}\left[\frac{\lambda\cos(\lambda x)}{x^3}-\frac{3\sin(\lambda x)}{x^3} \right]\sin(x^3) -\left[\frac{-\lambda\sin(\lambda x)}{x^3}-\frac{3\cos(\lambda x)}{x^3} \right]\cos(x^3)dx \} =3λ{x3cos(λxx3)x=Ax=B+AB[x3λcos(λx)x33sin(λx)]sin(x3)[x3λsin(λx)x33cos(λx)]cos(x3)dx}
综上所述,可以得到
∫ A B x sin ⁡ ( x 3 − λ x ) d x \int_{A}^{B}x\sin(x^3-\lambda x)dx ABxsin(x3λx)dx
= − 1 3 { cos ⁡ ( λ x + x 3 ) x ∣ x = A x = B + ∫ x = A x = B cos ⁡ ( λ x − x 3 ) x 2 d x + λ 3 cos ⁡ ( λ x − x 3 ) x 3 ∣ x = A x = B − λ 3 ∫ A B [ λ cos ⁡ ( λ x ) x 3 − 3 sin ⁡ ( λ x ) x 3 ] sin ⁡ ( x 3 ) − [ − λ sin ⁡ ( λ x ) x 3 − 3 cos ⁡ ( λ x ) x 3 ] cos ⁡ ( x 3 ) d x } =-\frac{1}{3}\{\frac{\cos(\lambda x+x^3)}{x}|_{x=A}^{x=B}+\int_{x=A}^{x=B}\frac{\cos(\lambda x-x^3)}{x^2}dx +\frac{\lambda}{3}\frac{\cos(\lambda x-x^3)}{x^3}|_{x=A}^{x=B} -\frac{\lambda}{3}\int_{A}^{B}\left[\frac{\lambda\cos(\lambda x)}{x^3}-\frac{3\sin(\lambda x)}{x^3} \right]\sin(x^3) -\left[\frac{-\lambda\sin(\lambda x)}{x^3}-\frac{3\cos(\lambda x)}{x^3} \right] \cos(x^3)dx \} =31{xcos(λx+x3)x=Ax=B+x=Ax=Bx2cos(λxx3)dx+3λx3cos(λxx3)x=Ax=B3λAB[x3λcos(λx)x33sin(λx)]sin(x3)[x3λsin(λx)x33cos(λx)]cos(x3)dx}
∫ A ∞ x sin ⁡ ( x 3 − λ x ) d x \int_{A}^{\infty}x\sin(x^3-\lambda x)dx Axsin(x3λx)dx
= − 1 3 { − cos ⁡ ( λ A + A 3 ) A + ∫ A ∞ cos ⁡ ( λ x − x 3 ) x 2 d x − λ 3 cos ⁡ ( λ A − A 3 ) A 3 − λ 3 ∫ A ∞ [ λ cos ⁡ ( λ x ) x 3 − 3 sin ⁡ ( λ x ) x 3 ] sin ⁡ ( x 3 ) − [ − λ sin ⁡ ( λ x ) x 3 − 3 cos ⁡ ( λ x ) x 3 ] cos ⁡ ( x 3 ) d x } =-\frac{1}{3}\{-\frac{\cos(\lambda A+A^3)}{A}+\int_{A}^{\infty}\frac{\cos(\lambda x-x^3)}{x^2}dx -\frac{\lambda}{3}\frac{\cos(\lambda A-A^3)}{A^3} -\frac{\lambda}{3}\int_{A}^{\infty}\left[\frac{\lambda\cos(\lambda x)}{x^3}-\frac{3\sin(\lambda x)}{x^3} \right]\sin(x^3) -\left[\frac{-\lambda\sin(\lambda x)}{x^3}-\frac{3\cos(\lambda x)}{x^3} \right] \cos(x^3)dx \} =31{Acos(λA+A3)+Ax2cos(λxx3)dx3λA3cos(λAA3)3λA[x3λcos(λx)x33sin(λx)]sin(x3)[x3λsin(λx)x33cos(λx)]cos(x3)dx}
∣ ∫ A ∞ x sin ⁡ ( x 3 − λ x ) d x ∣ ⩽ 1 3 { 1 A + ∫ A ∞ 1 x 2 d x + ∣ λ ∣ 3 A 2 + ∣ λ ∣ 3 ∫ A ∞ 2 ∣ λ ∣ x 3 + 6 x 4 d x } → 0 |\int_{A}^{\infty}x\sin(x^3-\lambda x)dx|\leqslant\frac{1}{3}\{\frac{1}{A}+\int_{A}^{\infty}\frac{1}{x^2}dx+\frac{|\lambda|}{3A^2}+\frac{|\lambda|}{3}\int_{A}^{\infty}\frac{2|\lambda|}{x^3}+\frac{6}{x^4}dx\}\to0 Axsin(x3λx)dx31{A1+Ax21dx+3A2λ+3λAx32λ+x46dx}0
( A → ∞ , 当 ∣ λ ∣ 有界时 ) (A\to\infty,\text{当}|\lambda|\text{有界时}) (A,λ有界时),
于是 ∫ 0 ∞ x sin ⁡ ( x 3 − λ x ) d x \int_{0}^{\infty}x\sin(x^3-\lambda x)dx 0xsin(x3λx)dx关于 ∣ λ ∣ ⩽ n ( ∀ n ∈ Z + ) |\lambda|\leqslant n(\forall n\in\mathbb{Z}_+) λn(nZ+)一致连续,而 I ( λ ) I(\lambda) I(λ) [ − n , n ] [-n,n] [n,n]上连续.由 n n n的任意性即知 I ( λ ) I(\lambda) I(λ)在整个 R \mathbb{R} R上连续.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值