偏微分方程I PDE的例子1 一维波动与热传导方程

本文介绍了偏微分方程的一些经典例子,包括一维波动方程和热传导方程。一维波动方程描述了固定在两端的弦的振动,一般形式为uxx=c2utt,而一维热传导方程基于Fourier定律,形式为ut=Kuxx,展示了能量守恒和热传导过程。
摘要由CSDN通过智能技术生成

偏微分方程I PDE的例子1 一维波动与热传导方程

一些著名的偏微分方程(partial differential equations, PDE)的例子:

  1. 波动方程(一维的wave equation是d‘Alembert、Bernoulli导出的,Euler导出了二维的wave equation)
  2. 热传导方程(Fourier导出)
  3. Navier-Stokes方程(流体力学)
  4. Maxwell方程(电磁理论)
  5. Boltzmann方程(统计力学)
  6. Schroedinger方程(量子力学)
  7. Black-Scholes方程(期权定价)

例1 一维波动方程
考虑一根被固定在 x = 0 x=0 x=0 x = L x=L x=L处的弦的波动, u ( x , t ) u(x,t) u(x,t) t t t时刻 x x x位置的挠度,我们考虑 x x x x + Δ x x+\Delta x x+Δx这两个位置,假设 t t t时刻它们的张力大小为 T T T,与水平方向的夹角分别为 ψ , ψ + Δ ψ \psi,\psi+\Delta \psi ψ,ψ+Δψ,考虑这一段微元,张力在竖直方向的合力为
T [ sin ⁡ ( ψ + Δ ψ ) − sin ⁡ ( ψ ) ] ≈ T [ tan ⁡ ( ψ + Δ ψ ) − tan ⁡ ( ψ ) ] = T [ ∂ u ( x + Δ x , t ) ∂ x − ∂ u ( x , t ) ∂ x ] = T ∂ 2 u ( x + ξ Δ x , t ) ∂ x 2 Δ x , ∃ ξ ∈ ( 0 , 1 ) T[\sin (\psi+\Delta \psi)-\sin(\psi)]\approx T[\tan (\psi+\Delta \psi)-\tan(\psi)] \\ = T[\frac{\partial u(x+\Delta x,t)}{\partial x}-\frac{\partial u(x,t)}{\partial x}]=T\frac{\partial^2 u(x+\xi \Delta x,t)}{\partial x^2}\Delta x,\exists \xi \in (0,1) T[sin(ψ+Δψ)sin(ψ)]T[tan(ψ+Δψ)tan(ψ)]=T[xu(x+Δx,t)xu(x,t)]=Tx22u(x+ξΔx,t)Δx,ξ(0,1)

最后一步用的Lagrange中值定理。根据牛顿第二定律,
T u x x Δ x = ρ Δ x u t t , T ρ u x x = u t t Tu_{xx}\Delta x=\rho \Delta x u_{tt} ,\frac{T}{\rho} u_{xx}=u_{tt} TuxxΔx=ρΔxutt,ρTuxx=utt

这里的 ρ \rho ρ是线密度。我们称这样的方程是homogeneous 1-D wave equation(齐次一维波动方程),它的一般形式为
u x x = c 2 u t t u_{xx}=c^2 u_{tt} uxx=c2utt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值