关于对数的有趣问题:lnx趋近于负无穷的速率与lnx趋近于正无穷的速率一样吗?对数的平方趋近于无穷的速率相当于x的几次方?

本文探讨了对数函数lnx趋近于负无穷和正无穷的速率,以及对数平方(lnx)²的渐进行为。通过对极限的分析,揭示了lnx趋近负无穷的速率是指数级,而lnx趋近正无穷的速率小于任何多项式。同时,(lnx)²的渐近行为也显示其增长速率同样是指数级。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于对数的有趣问题:lnx趋近于负无穷的速率与lnx趋近于正无穷的速率一样吗?对数的平方趋近于无穷的速率相当于x的几次方?

在最近的科研中,我遇到了一个有趣又不是很容易的问题,我需要了解对数的平方趋近于无穷的速率、倒数的对数趋近于0的速率,以及对数的平方的倒数趋近于0的速率。这些问题看上去都很容易的样子,毕竟对数函数是我们从高中起就在接触的函数。但当我尝试思考这些问题并试图给出解答的时候,我发现我太天真了,包含 ( ln ⁡ x ) 2 (\ln x)^2 (lnx)2的函数要找一个多项式近似真的是不太容易。


我先举个例子介绍为什么这样的问题很重要。在贝叶斯统计理论中,我们非常关注先验分布的阶,用 p ( θ ) p(\theta) p(θ)表示参数的先验密度,我们总是在试图找一个 α > 0 \alpha>0 α>0使得
m ∣ θ ∣ − α ≤ p ( θ ) ≤ M ∣ θ ∣ − α m |\theta|^{-\alpha} \le p(\theta) \le M|\theta|^{-\alpha} mθαp(θ)Mθα

因为 α \alpha α越小,即阶越小,那么参数的先验密度“尾巴”越厚,也就是 θ \theta θ取值很大的数的概率就会更大,所以 α \alpha α会影响参数的后验分布,进而影响基于后验分布做出的统计决策。一个在稀疏数据中非常常用的模型——Horseshoe估计,它的先验就满足这样的条件:
K 2 log ⁡ ( 1 + 4 θ 2 ) < p ( θ ) < K log ⁡ ( 1 + 2 θ 2 ) , K = ( 2 π 3 ) − 1 / 2 \frac{K}{2}\log (1+\frac{4}{\theta^2})<p(\theta)<K\log(1+\frac{2}{\theta^2}),K=(2\pi^3)^{-1/2} 2Klog(1+θ24)<p(θ)<Klog(1+θ22),K=(2π3)1/2

θ → ∞ \theta \to \infty θ时, 1 / θ 2 → 0 1/\theta^2 \to 0 1/θ20,我们可以对 log ⁡ ( 1 + 2 θ 2 ) \log(1+\frac{2}{\theta^2}) log(1+θ22)Taylor展开
log ⁡ ( 1 + 2 θ 2 ) = ∑ i = 1 ∞ ( − 1 ) i − 1 ( 2 / θ 2 ) i i = 2 θ 2 + o ( θ − 2 ) \log(1+\frac{2}{\theta^2}) = \sum_{i=1}^{\infty}(-1)^{i-1}\frac{(2/\theta^2)^i}{i}=\frac{2}{\theta^2}+o(\theta^{-2}) log(1+θ22)=i=1(1)i1i(2/θ2)i=θ22+o(θ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值