在做题的时候,我们经常会遇到需要求这么一个极限
lim
x
→
0
+
x
α
(
ln
x
)
β
(
α
,
β
>
0
)
\lim_{x \to 0^+} x^\alpha (\ln{x})^\beta \qquad (\alpha,\beta > 0)
x→0+limxα(lnx)β(α,β>0)
虽然很多老师和教辅资料直接给出了结论,但是并没有给出推导,只是用指数比对数增长的快这样含糊一句话盖过去了,下面我们来给出结论和推导。
结论
lim x → 0 + x α ( ln x ) β = 0 , 其 中 α , β > 0 \lim_{x \to 0^+} x^\alpha (\ln{x})^\beta =0 ,其中 \alpha ,\beta > 0 x→0+limxα(lnx)β=0,其中α,β>0
推导
lim
x
→
0
+
(
ln
x
)
β
x
−
α
=
洛必达
lim
x
→
0
+
β
(
ln
x
)
β
−
1
⋅
1
x
−
α
x
−
α
−
1
=
lim
x
→
0
+
β
(
ln
x
)
β
−
1
−
α
x
−
α
=
⋯
=
0
\underset{x\rightarrow 0^+}{\lim}\frac{\left( \ln x \right) ^{\beta}}{x^{-\alpha}}\xlongequal{\text{洛必达}}\underset{x\rightarrow 0^+}{\lim}\frac{\beta \left( \ln x \right) ^{\beta -1}\cdot \frac{1}{x}}{-\alpha x^{-\alpha -1}}=\underset{x\rightarrow 0^+}{\lim}\frac{\beta \left( \ln x \right) ^{\beta -1}}{-\alpha x^{-\alpha}}=\cdots =0
x→0+limx−α(lnx)β洛必达x→0+lim−αx−α−1β(lnx)β−1⋅x1=x→0+lim−αx−αβ(lnx)β−1=⋯=0
洛一次
l
n
x
lnx
lnx的指数就减少1,一直洛到指数
≤
0
\le0
≤0
下面来举些例子说明:
当
α
=
1
,
β
=
2
时
\alpha=1,\beta =2时
α=1,β=2时
lim
x
→
0
+
(
ln
x
)
2
x
−
1
=
洛必达
lim
x
→
0
+
2
ln
x
⋅
1
x
−
x
−
2
=
lim
x
→
0
+
2
ln
x
−
x
−
1
=
lim
x
→
0
+
2
⋅
1
x
x
−
2
=
lim
x
→
0
+
2
x
=
0
\underset{x\rightarrow 0^+}{\lim}\frac{\left( \ln x \right) ^2}{x^{-1}}\xlongequal{\text{洛必达}}\underset{x\rightarrow 0^+}{\lim}\frac{2\ln x\cdot \frac{1}{x}}{-x^{-2}}=\underset{x\rightarrow 0^+}{\lim}\frac{2\ln x}{-x^{-1}}=\underset{x\rightarrow 0^+}{\lim}\frac{2\cdot \frac{1}{x}}{x^{-2}}=\underset{x\rightarrow 0^+}{\lim}2x=0
x→0+limx−1(lnx)2洛必达x→0+lim−x−22lnx⋅x1=x→0+lim−x−12lnx=x→0+limx−22⋅x1=x→0+lim2x=0
当
α
=
2
,
β
=
2
时
\alpha=2,\beta =2时
α=2,β=2时
lim
x
→
0
+
(
ln
x
)
2
x
−
2
=
洛必达
lim
x
→
0
+
2
ln
x
⋅
1
x
−
2
x
−
3
=
lim
x
→
0
+
ln
x
−
x
−
2
=
lim
x
→
0
+
1
x
2
x
−
3
=
lim
x
→
0
+
1
2
x
2
=
0
\underset{x\rightarrow 0^+}{\lim}\frac{\left( \ln x \right) ^2}{x^{-2}}\xlongequal{\text{洛必达}}\underset{x\rightarrow 0^+}{\lim}\frac{2\ln x\cdot \frac{1}{x}}{-2x^{-3}}=\underset{x\rightarrow 0^+}{\lim}\frac{\ln x}{-x^{-2}}=\underset{x\rightarrow 0^+}{\lim}\frac{\frac{1}{x}}{2x^{-3}}=\underset{x\rightarrow 0^+}{\lim}\frac{1}{2}x^2=0
x→0+limx−2(lnx)2洛必达x→0+lim−2x−32lnx⋅x1=x→0+lim−x−2lnx=x→0+lim2x−3x1=x→0+lim21x2=0