limx^α(lnx)^β=0公式的推导

在做题的时候,我们经常会遇到需要求这么一个极限
lim ⁡ x → 0 + x α ( ln ⁡ x ) β ( α , β > 0 ) \lim_{x \to 0^+} x^\alpha (\ln{x})^\beta \qquad (\alpha,\beta > 0) x0+limxα(lnx)β(α,β>0)
虽然很多老师和教辅资料直接给出了结论,但是并没有给出推导,只是用指数比对数增长的快这样含糊一句话盖过去了,下面我们来给出结论和推导。

结论

lim ⁡ x → 0 + x α ( ln ⁡ x ) β = 0 , 其 中 α , β > 0 \lim_{x \to 0^+} x^\alpha (\ln{x})^\beta =0 ,其中 \alpha ,\beta > 0 x0+limxα(lnx)β=0,α,β>0

推导

lim ⁡ x → 0 + ( ln ⁡ x ) β x − α = 洛必达 lim ⁡ x → 0 + β ( ln ⁡ x ) β − 1 ⋅ 1 x − α x − α − 1 = lim ⁡ x → 0 + β ( ln ⁡ x ) β − 1 − α x − α = ⋯ = 0 \underset{x\rightarrow 0^+}{\lim}\frac{\left( \ln x \right) ^{\beta}}{x^{-\alpha}}\xlongequal{\text{洛必达}}\underset{x\rightarrow 0^+}{\lim}\frac{\beta \left( \ln x \right) ^{\beta -1}\cdot \frac{1}{x}}{-\alpha x^{-\alpha -1}}=\underset{x\rightarrow 0^+}{\lim}\frac{\beta \left( \ln x \right) ^{\beta -1}}{-\alpha x^{-\alpha}}=\cdots =0 x0+limxα(lnx)β洛必达 x0+limαxα1β(lnx)β1x1=x0+limαxαβ(lnx)β1==0
洛一次 l n x lnx lnx的指数就减少1,一直洛到指数 ≤ 0 \le0 0

下面来举些例子说明:
α = 1 , β = 2 时 \alpha=1,\beta =2时 α=1,β=2
lim ⁡ x → 0 + ( ln ⁡ x ) 2 x − 1 = 洛必达 lim ⁡ x → 0 + 2 ln ⁡ x ⋅ 1 x − x − 2 = lim ⁡ x → 0 + 2 ln ⁡ x − x − 1 = lim ⁡ x → 0 + 2 ⋅ 1 x x − 2 = lim ⁡ x → 0 + 2 x = 0 \underset{x\rightarrow 0^+}{\lim}\frac{\left( \ln x \right) ^2}{x^{-1}}\xlongequal{\text{洛必达}}\underset{x\rightarrow 0^+}{\lim}\frac{2\ln x\cdot \frac{1}{x}}{-x^{-2}}=\underset{x\rightarrow 0^+}{\lim}\frac{2\ln x}{-x^{-1}}=\underset{x\rightarrow 0^+}{\lim}\frac{2\cdot \frac{1}{x}}{x^{-2}}=\underset{x\rightarrow 0^+}{\lim}2x=0 x0+limx1(lnx)2洛必达 x0+limx22lnxx1=x0+limx12lnx=x0+limx22x1=x0+lim2x=0
α = 2 , β = 2 时 \alpha=2,\beta =2时 α=2,β=2
lim ⁡ x → 0 + ( ln ⁡ x ) 2 x − 2 = 洛必达 lim ⁡ x → 0 + 2 ln ⁡ x ⋅ 1 x − 2 x − 3 = lim ⁡ x → 0 + ln ⁡ x − x − 2 = lim ⁡ x → 0 + 1 x 2 x − 3 = lim ⁡ x → 0 + 1 2 x 2 = 0 \underset{x\rightarrow 0^+}{\lim}\frac{\left( \ln x \right) ^2}{x^{-2}}\xlongequal{\text{洛必达}}\underset{x\rightarrow 0^+}{\lim}\frac{2\ln x\cdot \frac{1}{x}}{-2x^{-3}}=\underset{x\rightarrow 0^+}{\lim}\frac{\ln x}{-x^{-2}}=\underset{x\rightarrow 0^+}{\lim}\frac{\frac{1}{x}}{2x^{-3}}=\underset{x\rightarrow 0^+}{\lim}\frac{1}{2}x^2=0 x0+limx2(lnx)2洛必达 x0+lim2x32lnxx1=x0+limx2lnx=x0+lim2x3x1=x0+lim21x2=0

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值