7.21 18级杭电多校第一场

比赛过程

  签到题写的时间有点长了,半天才找到规律,签完到一直在写斐波那契,没想到是个卡常数的题,需要各种打表,T到飞起。

题解

1004

题意

  问你长度为n的26个字母随机组成的字符串中据有最少回文子串的种类有多少。

解法

  发现其实三各不同字母拼在一起循环组成的字符串的回文子串最少,所以答案就是262524,注意特判 n = 1 , 2 , 3 n=1,2,3 n=1,2,3

代码
#include<bits/stdc++.h>
#define ll long long
#define IO ios::sync_with_stdio(false), cin.tie(0)
#define endl '\n'
#define FOR(a,b,c) for(int a=b;a<=c;a++)
#define RFOR(a,b,c) for(int a=b;a>=c;a--)
using namespace std;
int main() {
    IO;
    int t;
    cin >> t;
    while(t--){
        int n;
        cin >> n;
        if(n==1)
            cout << 26 << endl;
        else if(n==2)
            cout << 676 << endl;
        else if(n==3){
            cout << 17576 << endl;
        }
        else {
            ll ans = 26 * 25 * 24;
            cout <<ans<< endl;
        }
    }
    return 0;
}

1005

题意

   F F F 是斐波那契数列,求 ( F 0 ) k + ( F c ) k + ( F 2 c ) k + … + ( F n c ) k (F_0)^k+(F_c)^k+(F_{2c})^k+…+(F_{nc})^k (F0)k+(Fc)k+(F2c)k++(Fnc)k,其中 1 ≤ n , c ≤ 1 e 18 , 1 ≤ k ≤ 1 e 5 。 结 果 对 1 e 9 + 9 取 模 。 1\leq n,c\leq 1e18,1\leq k\leq 1e5。结果对1e9+9取模。 1n,c1e18,1k1e51e9+9

解法


看了人家的题解才知道什么是把预处理做到极致,开头是组合数预处理阶乘和阶乘的逆元,1e5复杂度,这道题T有200左右,这样是合算的,然后手动预处理出 1 + 5 2 \frac{1+\sqrt 5}{2} 21+5 1 − 5 2 \frac{1-\sqrt 5}{2} 215 在模1e9+9的情况(之前没仔细看题,拿1e9+7算了好多次)然后求出ac和bc,根据递推求出ti,复杂度为O(K),最后一个优化是欧拉降幂(真是简单又实用的东西,学到了学到了)。

代码
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <iomanip>
#include <string>
#include <set>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <fstream>
#include<unordered_map>
using namespace std;
#define ms(a, x) memset(a, x, sizeof(a))
#define fore(i, a, n) for (ll ll i = a; i < n; i++)
#define ford(i, a, n) for (ll ll i = n - 1; i >= a; i--)
#define si(a) scanf("%d", &a)
#define sl(a) scanf("%lld", &a)
#define sii(a, b) scanf("%d%d", &a, &b)
#define siii(a, b, c) scanf("%d%d%d", &a, &b, &c)
#define sll(a, b) scanf("%lld%lld", &a, &b)
#define slll(a, b, c) scanf("%lld%lld%lld", &a, &b, &c)
#define ss(a) scanf("%s", a);
#define debug(a) cout << a << endl
#define pr(a) printf("%d ", a)
#define endl '\n'
#define pi acos(-1.0)
#define tr t[root]
#define IO ios::sync_with_stdio(false), cin.tie(0)
#define ull unsigned long long
#define py puts("Yes")
#define pn puts("No")
#define pY puts("YES")
#define pN puts("NO")
#define re(i, a, b) for (int i = a; i <= b; ++i)
#define de(i, a, b) for (int i = a; i >= b; --i)
#define all(x) (x).begin(), (x).end()
const double eps = 1e-3;
inline int sgn(const double &x) { return x < -eps ? -1 : x > eps; }
typedef long long ll;
const ll inf = 0x3f3f3f3f;
template <class T>
inline void cmin(T &a, T b) { ((a > b) && (a = b)); }
template <class T>
inline void cmax(T &a, T b) { ((a < b) && (a = b)); }
const int MAXN = 1e5 + 10;
const ll mode = 1e9 + 9;
//快读-----------------------------------------------------------------------------------------
namespace fastIO
{
#define BUF_SIZE 100000
#define OUT_SIZE 100000
	//fread->read
	bool IOerror = 0;
	//inline char nc(){char ch=getchar();if(ch==-1)IOerror=1;return ch;}
	inline char nc()
	{
		static char buf[BUF_SIZE], *p1 = buf + BUF_SIZE, *pend = buf + BUF_SIZE;
		if (p1 == pend)
		{
			p1 = buf;
			pend = buf + fread(buf, 1, BUF_SIZE, stdin);
			if (pend == p1)
			{
				IOerror = 1;
				return -1;
			}
		}
		return *p1++;
	}
	inline bool blank(char ch) { return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t'; }
	template <class T>
	inline bool read(T &x)
	{
		bool sign = 0;
		char ch = nc();
		x = 0;
		for (; blank(ch); ch = nc())
			;
		if (IOerror)
			return false;
		if (ch == '-')
			sign = 1, ch = nc();
		for (; ch >= '0' && ch <= '9'; ch = nc())
			x = x * 10 + ch - '0';
		if (sign)
			x = -x;
		return true;
	}
	inline bool read(double &x)
	{
		bool sign = 0;
		char ch = nc();
		x = 0;
		for (; blank(ch); ch = nc())
			;
		if (IOerror)
			return false;
		if (ch == '-')
			sign = 1, ch = nc();
		for (; ch >= '0' && ch <= '9'; ch = nc())
			x = x * 10 + ch - '0';
		if (ch == '.')
		{
			double tmp = 1;
			ch = nc();
			for (; ch >= '0' && ch <= '9'; ch = nc())
				tmp /= 10.0, x += tmp * (ch - '0');
		}
		if (sign)
			x = -x;
		return true;
	}
	inline bool read(char *s)
	{
		char ch = nc();
		for (; blank(ch); ch = nc())
			;
		if (IOerror)
			return false;
		for (; !blank(ch) && !IOerror; ch = nc())
			*s++ = ch;
		*s = 0;
		return true;
	}
	inline bool read(char &c)
	{
		c = nc();
		if (IOerror)
		{
			c = -1;
			return false;
		}
		return true;
	}
	template <class T, class... U>
	bool read(T &h, U &... t) { return read(h) && read(t...); }
#undef OUT_SIZE
#undef BUF_SIZE
}; // namespace fastIO
using namespace fastIO;
//-----------------------------------------------------------------------------------------
ll Pow(ll a, ll b)
{
	ll sum = 1;
	a = a % mode;
	while (b > 0)
	{
		if (b % 2 == 1) //判断是否是奇数,是奇数的话将多出来的数事先乘如sum
			sum = (sum * a) % mode;
		b >>= 1;
		a = (a * a) % mode; // 不断的两两合并再取模,减小a和b的规模
	}
	return sum;
}
//----------------------------------------------------------------
ll a[MAXN],b[MAXN];
ll GC(ll x,ll y)
{
	ll tem=a[x]*b[y]%mode*b[x-y]%mode;
	return tem;
}
int main()
{
	ll t,N,C,K;
	read(t);
	a[0]=1;
	const int M=1e5;
	re(i,1,1e5)a[i]=a[i-1]*(ll)i%mode;
	b[M]=Pow(a[M],mode-2);
	de(i,M-1,0)b[i]=b[i+1]*(ll)(i+1)%mode;
	while (t--)
	{
		read(N);read(C);read(K);
		ll A=691504013,B=308495997;
		A=Pow(A,C%(mode-1));
		B=Pow(B,C%(mode-1));
		ll a=1;
		ll b=Pow(B,K);
		ll ib=Pow(B,mode-2);
		ll ans=0;
		re(i,0,K)
		{
			ll x=a*b%mode;
			if(x==1)
			x=(N+1)%mode;
			else
			x=(Pow(x,(N+1)%(mode-1))-1+mode)%mode*Pow((x-1+mode)%mode,mode-2)%mode;
			if((K-i)&1)
                x=(x==0?x:mode-x);
			ans=(ans+GC(K,i)*x%mode)%mode;
			a=a*A%mode;
			b=b*ib%mode;
		}
		ll mul=276601605;
        mul=Pow(mul,K);
        ans=ans*mul%mode;
        printf("%lld\n",ans);
	}
}

1010

题意
解法
代码

1010

题意
解法
代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值