matlab使用教程(34)—求解时滞微分方程(2)

本文详细介绍了如何在MATLAB中使用ddesd和dde23求解器处理具有状态依赖时滞的DDE方程组和具有不连续导数的心血管模型DDE。分别展示了如何编写方程、时滞和历史解的代码,以及如何设置求解参数和绘制解的图形。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.具有状态依赖时滞的 DDE

        以下示例说明如何使用 ddesd 对具有状态依赖时滞的 DDE(时滞微分方程)方程组求解。Enright 和Hayashi [1] 将此 DDE 方程组用作测试问题。方程组为:
        方程中的时滞仅出现在 y 项中。时滞仅取决于第二个分量 y 2 t 的状态,因此这些方程构成状态依赖时滞方程组。
        要在 MATLAB® 中求解此方程组,您需要先编写方程组、时滞和历史解的代码,然后再调用时滞微分方程求解器 ddesd,该求解器适用于具有状态依赖时滞的方程组。您可以将所需的函数作为局部函数包含在文件末尾(如本处所示),或者将它们作为单独的命名文件保存在 MATLAB 路径上的目录中。

1.1编写时滞代码

function d = dely(t,y)
d = exp(1 - y(2));
end

1.2编写方程代码

现在,创建一个函数来编写方程的代码。此函数应具有签名 dydt = ddefun(t,y,Z) ,其中:
function dydt = ddefun(t,y,Z)
dydt = [y(2);
 -Z(2,1)*y(2)^2*exp(1 - y(2))];
end

1.3编写历史解代码

        接下来,创建一个函数来定义历史解。历史解是时间 t t 0 的解。
function v = history(t) % history function for t < t0
v = [log(t); 
 1./t];
end

1.4求解方程

        最后,定义积分区间并使用 ddesd 求解器对 DDE 求解。
tspan = [0.1 5];
sol = ddesd(@ddefun, @dely, @history, tspan);

1.5对解进行绘图

        解结构体 sol 具有字段 sol.x sol.y,这两个字段包含求解器在这些时间点所用的内部时间步和对应的解。(如果您需要在特定点的解,可以使用 deval 来计算在特定点的解。)使用历史解函数绘制两个解分量对时间的图,以计算积分区间内的解析解来进行比较。
ta = linspace(0.1,5);
ya = history(ta);
plot(ta,ya,sol.x,sol.y,'o')
legend('y_1 exact','y_2 exact','y_1 ddesd','y_2 ddesd')
xlabel('Time t')
ylabel('Solution y')
title('D1 Problem of Enright and Hayashi')

1.6局部函数

        此处列出了 DDE 求解器 ddesd 为计算解而调用的局部辅助函数。您也可以将这些函数作为它们自己的文件保存在 MATLAB 路径上的目录中。
function dydt = ddefun(t,y,Z) % equation being solved
dydt = [y(2); 
 -Z(2,1).*y(2)^2.*exp(1 - y(2))];
end
%-------------------------------------------
function d = dely(t,y) % delay for y
d = exp(1 - y(2));
end
%-------------------------------------------
function v = history(t) % history function for t < t0
v = [log(t); 
 1./t];
end

2具有不连续性的心血管模型 DDE

        此示例说明如何使用 dde23 对具有不连续导数的心血管模型求解。此示例最初由 Ottesen [1] 提出。方程组为:
        该方程组受外周压的巨大影响,外周压会从 R = 1 . 05 急剧减少到 R = 0 . 84 ,从 t = 600 处开始。因此,该方程组在 t = 600 处的低阶导数具有不连续性。常历史解由以下物理参数定义
        要在 MATLAB® 中求解此方程组,您需要先编写方程组、参数、时滞和历史解的代码,然后再调用时滞微分方程求解器 dde23,该求解器适用于具有常时滞的方程组。您可以将所需的函数作为局部函数包含在文件末尾(如本处所示),或者将它们作为单独的命名文件保存在 MATLAB 路径上的目录中。

2.1定义物理参数

首先,将问题的物理参数定义为结构体中的字段。
p.ca = 1.55;
p.cv = 519;
p.R = 1.05;
p.r = 0.068;
p.Vstr = 67.9;
p.alpha0 = 93;
p.alphas = 93;
p.alphap = 93;
p.alphaH = 0.84;
p.beta0 = 7;
p.betas = 7;
p.betap = 7;
p.betaH = 1.17;
p.gammaH = 0;

tau = 4;

2.2编写方程代码

现在,创建一个函数来编写方程的代码。此函数应具有签名 dydt = ddefun(t,y,Z,p) ,其中:
        求解器自动将前三个输入传递给函数,变量名称决定如何编写方程代码。调用求解器时,参数结构体 p 将传递给函数。在本例中,时滞表示为:
function dydt = ddefun(t,y,Z,p)
 if t <= 600
 p.R = 1.05;
 else
 p.R = 0.21 * exp(600-t) + 0.84;
 end 
 ylag = Z(:,1);
 Patau = ylag(1);
 Paoft = y(1);
 Pvoft = y(2);
 Hoft = y(3);
 dPadt = - (1 / (p.ca * p.R)) * Paoft ...
 + (1/(p.ca * p.R)) * Pvoft ...
 + (1/p.ca) * p.Vstr * Hoft;
 dPvdt = (1 / (p.cv * p.R)) * Paoft...
 - ( 1 / (p.cv * p.R)...
 + 1 / (p.cv * p.r) ) * Pvoft;
 Ts = 1 / ( 1 + (Patau / p.alphas)^p.betas );
 Tp = 1 / ( 1 + (p.alphap / Paoft)^p.betap );
 dHdt = (p.alphaH * Ts) / (1 + p.gammaH * Tp) ...
 - p.betaH * Tp;
 dydt = [dPadt; dPvdt; dHdt];
end

2.3编写历史解代码

接下来,创建一个向量来定义三个分量 P a P v H 的常历史解。历史解是时间 t t 0 的解。
P0 = 93;
Paval = P0;
Pvval = (1 / (1 + p.R/p.r)) * P0;
Hval = (1 / (p.R * p.Vstr)) * (1 / (1 + p.r/p.R)) * P0;
history = [Paval; Pvval; Hval];
2.4 求解方程
        使用 ddeset 来指定在 t = 600 处存在不连续性。最后,定义积分区间 并使用 dde23 求解器对 DDE 求解。使用匿名函数指定 ddefun 以传入参数结构体 p
options = ddeset('Jumps',600);
tspan = [0 1000];
sol = dde23(@(t,y,Z) ddefun(t,y,Z,p), tau, history, tspan, options);

2.4对解进行绘图

        解结构体 sol 具有字段 sol.x sol.y,这两个字段包含求解器在这些时间点所用的内部时间步和对应的解。(如果您需要在特定点的解,可以使用 deval 来计算在特定点的解。)绘制第三个解分量(心率)对时间的图。
plot(sol.x,sol.y(3,:))
title('Heart Rate for Baroreflex-Feedback Mechanism.')
xlabel('Time t')
ylabel('H(t)')

2.5局部函数

        此处列出了 DDE 求解器 dde23 为计算解而调用的局部辅助函数。您也可以将这些函数作为它们自己的文件保存在 MATLAB 路径上的目录中。
function dydt = ddefun(t,y,Z,p) % equation being solved
 if t <= 600
 p.R = 1.05;
 else
 p.R = 0.21 * exp(600-t) + 0.84;
 end 
 ylag = Z(:,1);
 Patau = ylag(1);
 Paoft = y(1);
 Pvoft = y(2);
 Hoft = y(3);
 dPadt = - (1 / (p.ca * p.R)) * Paoft ...
 + (1/(p.ca * p.R)) * Pvoft ...
 + (1/p.ca) * p.Vstr * Hoft;
 dPvdt = (1 / (p.cv * p.R)) * Paoft...
 - ( 1 / (p.cv * p.R)...
 + 1 / (p.cv * p.r) ) * Pvoft;
 Ts = 1 / ( 1 + (Patau / p.alphas)^p.betas );
 Tp = 1 / ( 1 + (p.alphap / Paoft)^p.betap );
 dHdt = (p.alphaH * Ts) / (1 + p.gammaH * Tp) ...
 - p.betaH * Tp;
 dydt = [dPadt; dPvdt; dHdt];
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

配电网和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值