多线程使用--vector是线程安全的,方法同步,使用多线程时效率不高。

看下面的代码

#include <iostream>
#include<vector>
using std::vector;
using std::cout;
using std::endl;
void isNumEqual5(vector<int>& num)
{
#pragma omp parallel for
    for (int i = 0; i < num.size(); i++)
    {
        cout << i<<" "<<num[i] << endl;
    }
}
int main()
{
    vector<int> num;
    for (int i = 8; i >0; i--)
    {
        num.push_back(i);
    }
    isNumEqual5(num);
}


在这里插入图片描述
单线程顺序执行的,显然没有执行多线程。可见,vector的操作方法是自动加了同步锁的,也就是vector是线程安全的。感觉这种情况下多线程就没用了。
vector是线程安全的。
官方在可能涉及到线程不安全的操作都进行了synchronized操作,相当于官方帮你加了一把同步锁。核心的数组扩容实现和array list相差无几。
1.Vector中的方法是同步的。Vector的所有操作方法都被同步了,既然被同步了,多个线程就不可能同时访问vector中的数据,只能一个一个地访问,所以不会出现数据混乱的情况,所以是线程安全的。
2.同一个vector,A线程访问的时候,B线程不能访问而挂起(等待状态),等A释放对vector的锁以后B才能访问。而同一个List可以被多个线程同时访问 。
3.Vector所谓的线程安全是指调用Vector类的成员方法时,其他线程不能再访问该Vector对象。但是在调用两个Vector成员方法时,当前线程有可能再完成第一个方法后时间片到期,这时其他线程可以访问该Vector对象,造成调用第二个成员方法的结果可能与预想结果不同。这时为保证线程安全,需要加synchronized。

他的不安全在于,虽然官方帮你加上了同步锁,保证同一时间只会又一个线程操作同一个方法,但是他不能控制多个线程同时操作多个方法,也就是说,删除和添加是可以同时进行的,这就产生一个问题。删除实际上是分为两步的,第一步,找到被删除的元素所在下标,第二步,根据下标删除这个元素,而添加也分为两步,第一步,找到添加的下标,第二步,将其设为传入的参数,也就是说存在添加时,找到了数组下标,但是在进行添加时,该数组下标已经被删除的问题,反之亦然,但是这样操作很难看到效果,我们加点料,添加,然后取出要添加的位置,然后进行删除,运行。

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
假设有一个需求:编写一个程序,计算两个大矩阵的乘积。由于矩阵运算量较大,需要采用多线程并行计算,提高程序效率。 下面是一种可能的C++多线程使用案例: ```c++ #include <iostream> #include <thread> #include <vector> void mulMatrix(int start, int end, int* A, int* B, int* C, int n, int m, int p) { for (int i = start; i < end; i++) { for (int j = 0; j < p; j++) { C[i * p + j] = 0; for (int k = 0; k < m; k++) { C[i * p + j] += A[i * m + k] * B[k * p + j]; } } } } int main() { int n = 1000, m = 2000, p = 1500; int* A = new int[n * m]; int* B = new int[m * p]; int* C = new int[n * p]; // 初始化矩阵 for (int i = 0; i < n * m; i++) A[i] = i % 97; for (int i = 0; i < m * p; i++) B[i] = i % 89; int num_thread = 4; std::vector<std::thread> threads; // 创建多个线程进行并行计算 for (int i = 0; i < num_thread; i++) { int start = i * n / num_thread; int end = (i + 1) * n / num_thread; threads.emplace_back(std::thread(mulMatrix, start, end, A, B, C, n, m, p)); } // 等待所有线程结束 for (int i = 0; i < num_thread; i++) { threads[i].join(); } // 输出结果 std::cout << C[0] << " " << C[1] << " " << C[2] << std::endl; delete[] A; delete[] B; delete[] C; return 0; } ``` 该程序先初始化两个大矩阵A和B,然后创建4个线程进行并行计算,每个线程负责计算C矩阵的一部分。线程函数mulMatrix实现了两个矩阵的乘积计算,其中通过start和end参数来限定每个线程计算的部分。最后,等待所有线程计算完毕后,程序输出了C矩阵中前三个元素的值。 注意,该程序并未考虑多线程情况下的竞争条件和临界区问题,如果需要更进一步的优化,还需要加入线程锁等措施。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你好,Albert

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值