【机器学习】类不平衡 class-imbalance


类不平衡是什么?

  1. 概念:
    类不平衡(class-imbalance)指分类任务中不同类别的训练样例数目差别很大的情况。
    各个类别的样本量分布不均——某些类别的样本数量极多,有些类别的样本数量极少,就是类不平衡(class-imbalance)问题。

  2. 后果:
    若不同类别样例数差别很大,则会对学习过程造成困扰。例如有998个反例,但是正例只有2个,那么学习方法只需要返回一个永远将新样本预测为反例的学习器,就能达到99.8%的精度;然而这样的学习器往往没有价值,因为它不能预测出任何正例。


参考链接

机器学习 —— 类不平衡问题与SMOTE过采样算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值