【问题解决与原理解释】Attempting to unscale FP16 gradients.

35 篇文章 0 订阅
34 篇文章 1 订阅

在使用 accelerate 训练模型时遇到以下报错,其实本质是没有理解训练过程中的各种精度设置的原理,本文将从浮点数精度类型、模型精度、混合精度训练、梯度和精度的关系等基础概念进行解释。



Attempting to unscale FP16 gradients.
...  File "/paht/to/main.py", line 587, in main
    optimizer.step()
  File "/paht/to/main.py", line 605, in <module>
    main()
  File "/paht/to/main.py", line 88, in _run_code
    exec(code, run_globals)
  File "/paht/to/main.py", line 198, in _run_module_as_main (Current frame)
    return _run_code(code, main_globals, None,
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ValueError: Attempting to unscale FP16 gradients.

1. 浮点数精度类型

在深度学习中,我们主要使用三种浮点数精度:

  • float32 (单精度): 32位浮点数,提供较高的精度和较大的数值范围。
  • float16 (半精度): 16位浮点数,占用更少的内存,但精度和数值范围都较小。
  • bfloat16 (脑浮点数): 16位浮点数的一种变体,在精度和float32更接近,但仍然只占用16位。

2. 模型精度

模型精度指的是模型参数和计算过程中使用的数值精度:

  • 较高的精度(如float32)可以提供更准确的计算结果,但会占用更多内存和计算资源。
  • 较低的精度(如float16)可以减少内存使用和加速计算,但可能会影响模型的准确性。

3. 混合精度训练

混合精度训练是一种在训练过程中同时使用不同精度的技术。

  • 通常,在前向传播和反向传播中使用低精度(如float16)
  • 而在参数更新和累积中使用高精度(float32)

这样可以在保持模型精度的同时,提高训练速度和减少内存使用。

4. 梯度和精度的关系

梯度是模型参数相对于损失函数的偏导数。在反向传播过程中,梯度的计算和累积非常重要:

  • 梯度计算:在混合精度训练中,梯度通常以低精度(如float16)计算,以加速反向传播过程。
  • 梯度累积:由于 float16 的数值范围有限,直接累积 float16 梯度可能导致上溢或下溢。因此,通常会使用 float32 来累积梯度。
  • 梯度缩放:为了防止梯度消失,常常使用梯度缩放技术。这涉及在反向传播前将损失乘以一个缩放因子,然后在参数更新前将梯度除以这个因子。

5. “Attempting to unscale FP16 gradients” 错误与解决方案

这个错误通常出现在使用 PyTorch 的自动混合精度(AMP)功能时。它表明系统试图对FP16(float16)格式的梯度进行 unscale 操作,这是不允许的。正确的做法是:

  • 以 float16 计算梯度
  • 将梯度转换为 float32
  • 对 float32 格式的梯度进行 unscale 操作
  • 使用 unscale 后的 float32 梯度更新参数

解决方案:

  1. 检查训练代码中,是否有设置 dtype=torch.float16 等精度,并统一 models 每个模块中算出来的梯度的精度是否一致。
    • 可以参考下放代码,打印出模型中各层参数的梯度,看看精度情况。
  2. 如果精度问题解决后,还出来 OOM 的话,就只能进一步降低精度。
  # Backpropagate
  accelerator.backward(loss)
                
  # S-TODO
  for name, param in models.named_parameters():
      if param.grad is not None:
          print(f"Gradient for {name}: dtype={param.grad.dtype}, max={param.grad.max()}, min={param.grad.min()}")
  # S-TODO End
  optimizer.step()
  optimizer.zero_grad()

6. 精度和训练稳定性

使用低精度(如float16)可能会导致一些数值稳定性问题:

  • 梯度消失:小的梯度值可能会被四舍五入为零。
  • 梯度爆炸:大的梯度值可能会超出float16的表示范围。
  • 舍入误差:连续的舍入操作可能累积误差。

这就是为什么我们需要梯度缩放和混合精度策略,以平衡计算效率和数值稳定性。

7. 最佳实践

模型参数通常以 float32 存储。

  • 前向传播和反向传播可以使用 float16 来加速计算。
  • 梯度累积和参数更新应使用 float32 以保持数值稳定性。
  • 使用梯度缩放来处理 float16 的有限数值范围。
  • 某些对精度特别敏感的操作(如批归一化)可能需要始终在 float32 中进行。

理解这些概念有助于更好地调试和优化你的深度学习模型,特别是在使用混合精度训练时。如果在实践中遇到具体的问题,可以根据本文这些原理来分析和解决。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值