概要
在现代软件开发中,大语言模型(LLM)的应用越来越广泛,尤其是在自然语言处理(NLP)任务上。然而,对于一些对数据安全和响应速度有较高要求的应用场景,将模型部署在本地成为了一种常见的选择。本文将详细介绍如何使用LangChain框架来调用本地部署的Ollama大模型,具体来说是如何调用Qwen模型。
LangChain简介
LangChain是一个开源框架,旨在帮助开发者更容易地与语言模型进行交互。它提供了一系列工具和服务,使得开发者可以构建出复杂且功能丰富的应用。
Ollama简介
Ollama是一个允许用户在本地运行多种大型语言模型的服务平台。通过Ollama,开发者可以轻松地加载和运行不同的模型,而无需关心底层的技术细节。
整体架构流程
接下来,我们将展示如何使用LangChain中的Ollama类来创建一个模型实例,并通过它来获取Qwen模型的响应。
from langchain.llms import Ollama
from langchain.prompts import ChatPromptTemplate
from langchain.output_parsers import StrOutputParser
def get_response_from_qwen(prompt_text):
# 创建 Ollama 实例
llm = Ollama(model="qwen:7b")
# 定义提示模板
prompt = ChatPromptTemplate.from_template(prompt_text)
# 创建输出解析器
output_parser = StrOutputParser()
# 构建请求链
chain = prompt | llm | output_parser
# 执行请求
result = chain.invoke({"input": "根据下面主题写一个广告:康师傅绿茶"})
print(result)
return result
if __name__ == "__main__":
fun()
Ollama 是一个假设性的类名,在真实的环境中,它的具体实现细节会有所不同。不过,基于你提到的一些常见参数,我可以给你一个通用的解释,并假设 Ollama 是一个可以接受这些参数的模型加载器或生成器。以下是可能的支持配置参数及其简要介绍:
model (str): 指定要加载的语言模型的名字或者路径。例如 “qwen:7b” 可能是指向一个名为 Qwen 的模型,该模型具有 70 亿个参数。
max_token (int): 生成文本的最大长度(以 token 计)。当生成的文本达到这个长度时,生成过程就会停止。
do_sample (bool): 如果设置为 True,则在生成过程中采用随机采样,这通常会使生成的文本更加多样化;如果设置为 False,则会选取最有可能的下一个 token(即 argmax),这样可以得到更确定的结果。
temperature (float): 控制生成文本的随机性程度。温度值越高,生成的文本越随机;温度值越低,生成的文本越倾向于高概率的词。当 temperature=0 时,总是选择概率最高的词。
top_p (float): 核采样(Nucleus Sampling)的阈值。选择累计概率达到 top_p 的词汇作为候选词。通常与 temperature 结合使用,以进一步提高生成文本的质量。
小结
通过以上步骤,我们成功地使用LangChain框架调用了本地部署的Ollama大模型Qwen。这种方式不仅提高了应用的安全性和响应速度,也为开发者提供了更多的灵活性。未来,随着更多模型的支持和技术的进步,这种方式将会变得更加普遍和高效。