基于LangChain调用本地部署(Ollama)的大模型Qwen(2)

概要

在现代软件开发中,大语言模型(LLM)的应用越来越广泛,尤其是在自然语言处理(NLP)任务上。然而,对于一些对数据安全和响应速度有较高要求的应用场景,将模型部署在本地成为了一种常见的选择。本文将详细介绍如何使用LangChain框架来调用本地部署的Ollama大模型,具体来说是如何调用Qwen模型。

LangChain简介
LangChain是一个开源框架,旨在帮助开发者更容易地与语言模型进行交互。它提供了一系列工具和服务,使得开发者可以构建出复杂且功能丰富的应用。

Ollama简介
Ollama是一个允许用户在本地运行多种大型语言模型的服务平台。通过Ollama,开发者可以轻松地加载和运行不同的模型,而无需关心底层的技术细节。

整体架构流程

接下来,我们将展示如何使用LangChain中的Ollama类来创建一个模型实例,并通过它来获取Qwen模型的响应。

from langchain.llms import Ollama
from langchain.prompts import ChatPromptTemplate
from langchain.output_parsers import StrOutputParser

def get_response_from_qwen(prompt_text):
    # 创建 Ollama 实例
    llm = Ollama(model="qwen:7b"# 定义提示模板
    prompt = ChatPromptTemplate.from_template(prompt_text)
    
    # 创建输出解析器
    output_parser = StrOutputParser()
    
    # 构建请求链
    chain = prompt | llm | output_parser
    
    # 执行请求
    result = chain.invoke({"input": "根据下面主题写一个广告:康师傅绿茶"})
    print(result)
    return result

if __name__ == "__main__":
    fun()

Ollama 是一个假设性的类名,在真实的环境中,它的具体实现细节会有所不同。不过,基于你提到的一些常见参数,我可以给你一个通用的解释,并假设 Ollama 是一个可以接受这些参数的模型加载器或生成器。以下是可能的支持配置参数及其简要介绍:

model (str): 指定要加载的语言模型的名字或者路径。例如 “qwen:7b” 可能是指向一个名为 Qwen 的模型,该模型具有 70 亿个参数。
max_token (int): 生成文本的最大长度(以 token 计)。当生成的文本达到这个长度时,生成过程就会停止。
do_sample (bool): 如果设置为 True,则在生成过程中采用随机采样,这通常会使生成的文本更加多样化;如果设置为 False,则会选取最有可能的下一个 token(即 argmax),这样可以得到更确定的结果。
temperature (float): 控制生成文本的随机性程度。温度值越高,生成的文本越随机;温度值越低,生成的文本越倾向于高概率的词。当 temperature=0 时,总是选择概率最高的词。
top_p (float): 核采样(Nucleus Sampling)的阈值。选择累计概率达到 top_p 的词汇作为候选词。通常与 temperature 结合使用,以进一步提高生成文本的质量。

小结

通过以上步骤,我们成功地使用LangChain框架调用了本地部署的Ollama大模型Qwen。这种方式不仅提高了应用的安全性和响应速度,也为开发者提供了更多的灵活性。未来,随着更多模型的支持和技术的进步,这种方式将会变得更加普遍和高效。

`langchain`是一个基于Python的库,主要用于构建和管理自然语言处理(NLP)任务的链式操作。它提供了一系列的功能,比如文本理解、生成、问答系统等,通过一系列的链式调用来完成复杂的NLP任务。 `langchain`库允许用户以一种结构化的方式将各种NLP组件连接起来,使得模型之间的数据流动变得清晰和简洁。这通常涉及创建一个流程,该流程从输入数据开始,经过序列的一系列变换和预测步骤,最终得到期望的结果。例如,在构建一个基于文档的知识检索系统时,可以依次使用预处理功能对文档进行清洗,然后使用向量化技术将其转换为适合机器学习模型的表示形式,最后通过查询机制找到与查询最相关的文档片段。 ### 使用示例: 假设我们想要创建一个简单的问答系统,其中包含了一个预处理器、一个编码器、一个模型以及一个解码器。在这个例子中,`langchain`可以帮助我们将这些组件组织在一起并执行所需的操作: ```python from langchain.chains import RetrievalQA # 创建预处理器实例 preprocessor = PreProcessor() # 创建编码器实例 encoder = Encoder() # 创建模型实例 model = Model() # 创建解码器实例 decoder = Decoder() # 将所有组件链接到一起形成一个完整的链式流程 qa_chain = RetrievalQA(model=model, retriever=preprocessor.process(encoded_data), decoder=decoder.decode) # 现在可以使用这个链条来进行实际的问答了 response = qa_chain("您的问题") ``` ### `langchain`的优势: 1. **模块化设计**:允许开发者自由组合不同的组件,如预处理器、编码器、模型、解码器等,以便针对特定任务优化或定制解决方案。 2. **易于集成**:与多种流行的NLP工具和库兼容,简化了复杂系统的构建过程。 3. **清晰的流程管理**:通过链式调用,使得整个工作流的管理和调试变得更加直观和高效。 ### 关联问题: 1. `langchain`适用于哪些类型的NLP任务? 2. 怎样在实际项目中有效地利用`langchain`库进行模型集成? 3. `langchain`与其他常用的NLP库相比有哪些独特之处?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值