关于一个简单函数方程问题的深入探究

关于一个简单函数方程问题的探究过程

这个问题是一个高中同学问我的,来源是某张高数卷子的原题。但这个问题并不严谨,据说高数卷子默认为给出的函数都是任意阶可导的,而且所有函数以及其所有导数全部连续。问题本身是很简单的,看一眼就能得到答案。但是在给出这么强的条件下,我不得不开始思考,满足这样条件的函数存在吗?

我“仔细思考”半个小时之后,写出比较冗长的步骤把这个问题给证伪了:这样的函数是不存在的。但是在我第二天拿出之前的草稿,发现自己有一个地方写错了,尽管错误不明显,无奈之下只能重新想别的办法否定这个问题。最后用别的办法把这个函数给求出来了。这个函数的形式竟然如此简单,但我为了得到这个函数却没有更简单的方法。这也是函数方程的困难所在,为了追求解题的严谨,解出函数的过程往往不那么容易。

那么,感兴趣的同学可以看一看我两次的论证过程,希望你可以从中体会到什么。

问 题 : 已 知 f ( x + y ) = f ( x ) g ( y ) + f ( y ) g ( x ) , f ( 0 ) = 0 , f ′ ( 0 ) = 1 , g ′ ( 0 ) = 0 , 求 证 : f ′ ( x ) = g ( x ) . 问题:已知f(x+y)=f(x)g(y)+f(y)g(x),f(0)=0,f'(0)=1,g'(0)=0,求证:f'(x)=g(x). f(x+y)=f(x)g(y)+f(y)g(x),f(0)=0,f(0)=1,g(0)=0,:f(x)=g(x).
证明:

等式两端对y求偏导数,得:
f ′ ( x + y ) = f ( x ) g ′ ( y ) + f ′ ( y ) g ( x ) ⋯ ⋯ ① f'(x+y)=f(x)g'(y)+f'(y)g(x)\cdots\cdots① f(x+y)=f(x)g(y)+f(y)g(x)
令x=0,得:
f ′ ( y ) = f ( 0 ) g ′ ( y ) + f ′ ( y ) g ( 0 ) = g ′ ( y ) f'(y)=f(0)g'(y)+f'(y)g(0)=g'(y) f(y)=f(0)g(y)+f(y)g(0)=g(y)

证毕.

那么,我们怎么证明这个函数是不存在的呢?首先写出我第一次错误的证法。
证 明 : 证明: :

在 ① 式 中 令 y = x , 得 : 在①式中令y=x,得: y=x
f ′ ( 2 x ) = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) = [ f ( x ) g ( x ) ] ′ ⋯ ⋯ ② f'(2x)=f'(x)g(x)+f(x)g'(x)=[f(x)g(x)]'\cdots\cdots② f(2x)=f(x)g(x)+f(x)g(x)=[f(x)g(x)] 对 ② 式 两 端 积 分 得 : 对②式两端积分得:
f ( 2 x ) = f ( x ) g ( x ) + C f(2x)=f(x)g(x)+C f(2x)=f(x)g(x)+C 令 x = 0 : 令x=0: x=0
0 = 0 + C 0=0+C 0=0+C 也 即 也即
C = 0 , f ( 2 x ) = f ( x ) g ( x ) ⋯ ⋯ ③ C=0,f(2x)=f(x)g(x)\cdots\cdots③ C=0,f(2x)=f(x)g(x) 在 题 干 的 式 子 中 , 令 x = y : 在题干的式子中,令x=y: x=y
f ( 2 x ) = 2 f ( x ) g ( x ) ⋯ ⋯ ④ f(2x)=2f(x)g(x)\cdots\cdots④ f(2x)=2f(x)g(x) 由 ③ ④ 知 : 由③④知:
[ f 2 ( x ) ] ′ = 2 f ( x ) f ′ ( x ) = 2 f ( x ) g ( x ) = 0 [f^2(x)]'=2f(x)f'(x)=2f(x)g(x)=0 [f2(x)]=2f(x)f(x)=2f(x)g(x)=0 对 上 式 积 分 : 对上式积分:
f 2 ( x ) = C = f 2 ( 0 ) = 0 f^2(x)=C=f^2(0)=0 f2(x)=C=f2(0)=0 也 就 是 也就是
f ( x ) = 0 , f ′ ( x ) = 0 , 与 f ′ ( 0 ) = 1 矛 盾 ! f(x)=0,f'(x)=0,与f'(0)=1矛盾! f(x)=0f(x)=0,f(0)=1 所 以 符 合 题 意 的 函 数 是 不 存 在 的 。 所以符合题意的函数是不存在的。

证 毕 . 证毕. .

有没有看出上述步骤的错误呢?其实在第二步“对②式两端积分”时,左边的积分的变量是2x,我当时没有考虑到这里的换元问题,导致等式右边的系数少了一个2,最后③式与④式应该是完全相同的。那么,我们重新来探究这个问题。

证 明 : 证明:

对 题 干 中 的 式 子 , 我 们 令 x = − y , 有 : 对题干中的式子,我们令x=-y,有: x=y
0 = f ( x ) f ′ ( − x ) + f ( − x ) f ′ ( x ) 0=f(x)f'(-x)+f(-x)f'(x) 0=f(x)f(x)+f(x)f(x) 构 造 函 数 F ( x ) = f ( x ) / f ( − x ) , 有 F ′ ( x ) = 0 构造函数F(x)=f(x)/f(-x),有F'(x)=0 F(x)=f(x)/f(x),F(x)=0

两 端 积 分 : 两端积分: f ( x ) = C f ( − x ) f(x)=Cf(-x) f(x)=Cf(x) 两 端 求 导 : 两端求导:
f ′ ( x ) = − C f ′ ( − x ) f'(x)=-Cf'(-x) f(x)=Cf(x) 令 x = 0 : 令x=0: x=0
C = − 1 C=-1 C=1 所 以 f ( x ) 是 奇 函 数 , f ′ ( x ) 是 偶 函 数 , f ′ ′ ( x ) 是 奇 函 数 。 所以f(x)是奇函数,f'(x)是偶函数,f''(x)是奇函数。 f(x),f(x)f(x)

在 题 干 的 式 子 中 令 y = − 2 x , 我 们 有 : 在题干的式子中令y=-2x,我们有: y=2x
f ( − x ) = f ( x ) f ′ ( − 2 x ) + f ( − 2 x ) f ′ ( x ) f(-x)=f(x)f'(-2x)+f(-2x)f'(x) f(x)=f(x)f(2x)+f(2x)f(x) 把 − x 替 换 为 x 并 利 用 奇 偶 性 : 把-x替换为x并利用奇偶性: xx:
f ( x ) = − f ( x ) f ′ ( 2 x ) + f ( 2 x ) f ′ ( x ) ⋯ ⋯ ⑤ f(x)=-f(x)f'(2x)+f(2x)f'(x)\cdots\cdots⑤ f(x)=f(x)f(2x)+f(2x)f(x) 由 ④ 式 , 我 们 有 : 由④式,我们有:
f ( 2 x ) = 2 f ( x ) f ′ ( x ) ⋯ ⋯ ⑥ f(2x)=2f(x)f'(x)\cdots\cdots⑥ f(2x)=2f(x)f(x) 对 其 两 端 求 导 : 对其两端求导:
f ′ ( 2 x ) = [ f ′ ( x ) ] 2 + f ( x ) f ′ ′ ( x ) ⋯ ⋯ ⑦ f'(2x)=[f'(x)]^2+f(x)f''(x)\cdots\cdots⑦ f(2x)=[f(x)]2+f(x)f(x) 将 ⑥ ⑦ 带 入 ⑤ 式 : 将⑥⑦带入⑤式:
f ( x ) = − f ( x ) ( [ f ′ ( x ) ] 2 + f ( x ) f ′ ′ ( x ) ) + 2 f ( x ) [ f ′ ( x ) ] 2 f(x)=-f(x)([f'(x)]^2+f(x)f''(x))+2f(x)[f'(x)]^2 f(x)=f(x)([f(x)]2+f(x)f(x))+2f(x)[f(x)]2 f ( x ) ≠ 0 时 , 有 : f(x)≠0时,有: f(x)̸=0
1 = [ f ′ ( x ) ] 2 − f ( x ) f ′ ′ ( x ) 1=[f'(x)]^2-f(x)f''(x) 1=[f(x)]2f(x)f(x) 利 用 初 值 条 件 , 解 这 个 微 分 方 程 , 我 们 有 : 利用初值条件,解这个微分方程,我们有:
f ( x ) = x f(x)=x f(x)=x 显 然 这 个 函 数 是 满 足 条 件 的 . 显然这个函数是满足条件的. .

解决这个函数方程确实花了我不少精力,尤其是在解最后一个微分方程时,过程是相当复杂的,这里省略了解方程的步骤。可见做出一个断言之前必须要有充分的理论支持。即使认为一个结论不正确,也应该自己在纸上把每一步的想法写清楚才能成功。这也是我的老师经常教我的:再显然的结论,也要严谨地写出来,不然等到你失败了,一切都晚了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值