关于凸函数中的Hadamard定理引发的思考

本文通过一个具体的不等式问题,探讨了利用凸函数的性质和Lagrange中值定理来证明Hadamard不等式。文章详细展示了不等式的左右两边如何分别被证明,同时对比了Hadamard定理的直接证明,强调了理解凸函数本质的重要性。此外,还提及了积分与求和的关系以及Jensen不等式在证明过程中的应用。
摘要由CSDN通过智能技术生成

先看一个问题,是我的一位同学提出来的.原题只有左边的不等式。为了文章的完整性,我加入了右边的不等式并且另外给出证明.

问 题 : 若 f ′ ( x ) 在 [ x 1 , x 2 ] 上 递 增 , 求 证 : f ( x 1 + x 2 2 ) ≤ 1 x 2 − x 1 ∫ x 1 x 2 f ( x ) d x ≤ f ( x 1 ) + f ( x 2 ) 2 问题:若f'(x)在[x_1,x_2]上递增,求证:f(\frac{x_1+x_2}{2})\leq \frac{1}{x_2-x_1}\int^{x_2}_{x_1}f(x){\rm d}x\leq \frac{f(x_1)+f(x_2)}{2} f(x)[x1,x2]f(2x1+x2)x2x11x1x2f(x)dx2f(x1)+f(x2)给出这个条件,其实表明了f(x)是凸函数,我的第一反应是用Hadamard定理的证明完成它。但定理的证明比较复杂,这个问题强化了Hadamard定理的条件,给出这样的条件,应该可以考虑更简便的方法,而不采用Hadamard定理的证明。Hadamard定理在后文给出)首先我们可以考虑利用Lagrange中值定理证明它.

证 明 : 证明:
先 证 右 边 , 我 们 利 用 L a g r a n g e 中 值 定 理 : 先证右边,我们利用Lagrange中值定理: Lagrange
f ( x ) = f ( x 1 ) + ( x − x 1 ) f ′ ( t ) ( x 1 ≤ t ≤ x ) f(x)=f(x_1)+(x-x_1)f'(t)\quad(x_1\leq t\leq x) f(x)=f(x1)+(xx1)f(t)(x1tx) 由 f ′ ( x ) 递 增 , 我 们 有 由f'(x)递增,我们有 f(x) f ( x ) ≤ f ( x 1 ) + ( x − x 1 ) f ′ ( x ) f(x)\leq f(x_1)+(x-x_1)f'(x) f(x)f(x1)+(xx1)f(x) 代 入 原 式 , 有 : 代入原式,有:
1 x 2 − x 1 ∫ x 1 x 2 f ( x ) d x ≤ 1 x 2 − x 1 ∫ x 1 x 2 [ f ( x 1 ) + ( x − x 1 ) f ′ ( x ) ] d x \frac{1}{x_2-x_1}\int^{x_2}_{x_1}f(x){\rm d}x\leq \frac{1}{x_2-x_1}\int^{x_2}_{x_1}[f(x_1)+(x-x_1)f'(x)]{\rm d}x x2x11x1x2f(x)dxx2x11x1x2[f(x1)+(xx1)f(x)]dx = f ( x 1 ) + 1 x 2 − x 1 ∫ x 1 x 2 x f ′ ( x ) d x − x 1 x 2 − x 1 [ f ( x 2 ) − f ( x 1 ) ] =f(x_1)+ \frac{1}{x_2-x_1}\int^{x_2}_{x_1}xf'(x){\rm d}x-\frac{x_1}{x_2-x_1}[f(x_2)-f(x_1)] =f(x1)+x2x11x1x2xf(x)dxx2x1x1[f(x2)f(x1)] = x 2 f ( x 1 ) − x 1 f ( x 2 ) x 2 − x 1 + 1 x 2 − x 1 ∫ x 1 x 2 x d f ( x ) =\frac{x_2f(x_1)-x_1f(x_2)}{x_2-x_1}+ \frac{1}{x_2-x_1}\int^{x_2}_{x_1}x{\rm d}f(x)\quad\quad\quad\quad\quad\quad =x2x1x2f(x1)x1f(x2)+x2x11x1x2xdf(x) = x 2 f ( x 1 ) − x 1 f ( x 2 ) x 2 − x 1 + x 2 f ( x 2 ) − x 1 f ( x 1 ) x 2 − x 1 − 1 x 2 − x 1 ∫ x 1 x 2 f ( x ) d x \qquad\quad=\frac{x_2f(x_1)-x_1f(x_2)}{x_2-x_1}+\frac{x_2f(x_2)-x_1f(x_1)}{x_2-x_1} -\frac{1}{x_2-x_1}\int^{x_2}_{x_1}f(x){\rm d}x =x2x1x2f(x1)x1f(x2)+x2

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值