一个域上的多项式问题的反例

我们知道,在数域K中,一个多项式无重因式 ⇔ ( f ( x ) , f ′ ( x ) ) = 1 \Leftrightarrow (f(x),f'(x))=1 (f(x),f(x))=1。那么,这个结论对任意一个域上的多项式成立吗?答案是否定的。问题来自丘维声的《高等代数》,下册,清华大学出版社,第141面。反例不容易想到,并且证明也有一定的技巧。接下来给出我的解法。
p p p是素数,我们考虑 Z p Z_p Zp上分式域 Z p ( y ) Z_p(y) Zp(y),令 f ( x ) = x p + y f(x)=x^p+y f(x)=xp+y,接下来证明 f ( x ) f(x) f(x) Z p ( y ) Z_p(y) Zp(y)上是不可约的。
证明:
考 虑 Z p ( y ) 的 代 数 闭 包 M , 在 M 中 取 α , α p = y , 由 于 Z p ( y ) 特 征 为 p , 故 有 考虑Z_p(y)的代数闭包M,在M中取α,α^p=y,由于Z_p(y)特征为p,故有 Zp(y)MMααp=yZp(y)p
f ( x ) = ( x + α ) p . f(x)=(x+α)^p. f(x)=(x+α)p. 若 f ( x ) 在 Z p ( y ) 上 可 约 , 设 若f(x)在Z_p(y)上可约,设 f(x)Zp(y)
f ( x ) = g ( x ) h ( x ) . 其 中 g ( x ) , h ( x ) ∈ Z p ( y ) [ x ] . f(x)=g(x)h(x).其中g(x),h(x)∈Z_p(y)[x]. f(x)=g(x)h(x).g(x)h(x)Zp(y)[x]. 则 必 然 有 : 则必然有: :
g ( x ) = ( x + α ) u , h ( x ) = ( x + α ) v , u + v = p . g(x)=(x+α)^u,h(x)=(x+α)^v,u+v=p. g(x)=(x+α)u,h(x)=(x+α)v,u+v=p. 有 ( u , v ) ∣ p , 而 ( u , v ) &lt; p , 故 ( u , v ) = 1. 由 B e ˊ z o u t 定 理 , 存 在 a , b ∈ Z , s . t . a u + b v = 1. 有(u,v)|p,而(u,v)&lt;p,故(u,v)=1.由Bézout定理,存在a,b∈Z,s.t. au+bv=1. (u,v)p,(u,v)<p,(u,v)=1.Beˊzouta,bZs.t.au+bv=1.

我 们 考 虑 多 项 式 : 我们考虑多项式:
g ( x ) a h ( x ) b = ( x + α ) a u + b v = x + α ∈ Z p ( y ) [ x ] . g(x)^ah(x)^b=(x+α)^{au+bv}=x+α∈Z_p(y)[x]. g(x)ah(x)b=(x+α)au+bv=x+αZp(y)[x]. ⇒ α ∈ Z p ( y ) . \Rightarrowα∈Z_p(y). αZp(y). ⇒ ∃ c ( y ) , d ( y ) ∈ Z p [ y ] , s . t . α = c ( y ) d ( y ) . \Rightarrow\exists c(y),d(y)∈Z_p[y],s.t. α=\frac{c(y)}{d(y)}. c(y),d(y)Zp[y]s.t.α=d(y)c(y). ⇒ c ( y ) p = y d ( y ) p . \Rightarrow c(y)^p=yd(y)^p. c(y)p=yd(y)p. ⇒ d e g ( c ( y ) ) &gt; d e g ( d ( y ) ) . \Rightarrow deg(c(y))&gt;deg(d(y)). deg(c(y))>deg(d(y)). ⇒ d e g ( c ( y ) p ) &gt; d e g ( d ( y ) p ) + p − 1. \Rightarrow deg(c(y)^p)&gt;deg(d(y)^p)+p-1. deg(c(y)p)>deg(d(y)p)+p1. 但 是 我 们 有 但是我们有 d e g ( c ( y ) p ) = d e g ( d ( y ) p ) + 1. deg(c(y)^p)=deg(d(y)^p)+1. deg(c(y)p)=deg(d(y)p)+1. 所 以 我 们 得 到 所以我们得到 p &lt; 2 p&lt;2 p<2 这 与 p 为 素 数 矛 盾 。 故 f ( x ) 是 不 可 约 的 。 这与p为素数矛盾。故f(x)是不可约的。 pf(x)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值