质数+约数(看了也没用)

质数

定义

若一个数,只有一和它本身两个因子,那么这个数就是一个质数

判断一个数是不是质数的方法

试除法
bool pd(int x)
{
	if(x<2) return 0;
	for(int i=2;i<=sqrt(x);i++)
	{
		if(x%i==0) 
		return 0;
	}
	return 1;
} 

看着就知道这就是傻瓜思路,一个一个试,试到sqrt(x).(傻瓜思路不解释了)

如何筛出质数(用于预处理数组)
1.埃氏筛
利用已经筛出的素数去筛别的素数.
代码如下

int n,prime[N];
void p()
{
	for(int i=2;i<=n;i++)
    {
    	if(prime[i]) 
    	continue;
        for(int j=2;i*j<=n;j++) 
        prime[i*j]=1;
    }
    return ;
}

2.欧拉筛
比线性筛的复杂度更低一点
每次只用一个数用小于当前这个数最小质因子的质数去筛其他数
代码如下

int n,prime[N],cnt;
bool vis[N];
void p()
{
	for(int i=2;i<=n;i++)
    {
    	if(!vis[i]) 
    	prime[++cnt]=i;
    	for(int j=1;j<=cnt&&i*prime[j]<=n;j++)
        {
        	vis[i*prime[j]]=1;
            if(i%prime[j]==0)
            break;
    	}
    }
}	

当然不会上面两个你也可以一个个枚举然后试除

质因数分解
根据上面两个筛法,我们可以把一个数分解成几个质数次方的乘积.

算数基本定理

任何一个大于1的数都可以被分解成有限个质数乘积的形式

若整数n可以被整数x整除,那么记x为n的约数.x|n.

直接枚举然后把当前因子全部除尽即可

分解成 p 1 × 2 × p 3 × ⋯   p n p_{1}\times _{2}\times p_{3}\times \cdots \ p_{n} p1×2×p3× pn这种形式

const int N=1005;
int p[N];
int f(int x)
{
	int cnt=0;
	for(int i=2;i*i<=x;i++)
	{
		while(x%i==0)
		{
			p[++cnt]=i;
			x/=i;	
		}
	}
	if(x>1) p[++cnt]=x;
	return cnt;
}

约数

定义

N N N的正约数的集合

对于任意的 d ∣ n d|n dn,只要扫描 1 ⋯ n 1\cdots\sqrt n 1n 就能找到n的所有正约数。
代码如下

int factor[N] ,int tot = 0;
for(int i=1;i<=sqrt(n);i++)
{
	if(n%i) 
	continue;
	factor[++tot]=i;
	if(i!=n/i) 
	factor[++tot]=n/i;
}

最大公约数

定义

若自然数 d d d同时是 a a a b b b的约数,则称 d d d a a a b b b的公约数

在所有的公约数中最大的一个就是最大公约数,记作 g c d ( a , b ) gcd(a,b) gcd(a,b)

最小公倍数

定义

若自然数 m m m同时是 a a a b b b的倍数,则成 m m m a a a b b b的公约数

在所有的公倍数中最小的一个就是最小公倍数,记住 l c m ( a , b ) lcm(a,b) lcm(a,b)

引理

l c m ( a , b ) ∗ g c d ( a , b ) = a ∗ b lcm(a,b)*gcd(a,b)=a*b lcm(a,b)gcd(a,b)=ab

证明

x = g c d ( a , b ) , a 0 = a x , b 0 = b x x=gcd(a,b),a_0=\frac{a}{x},b_0=\frac{b}{x} x=gcd(a,b),a0=xa,b0=xb

根据定义得 g c d ( a 0 , b 0 ) = 1 gcd(a_0,b_0)=1 gcd(a0,b0)=1
l c m ( a 0 , b 0 ) = a o × b 0 lcm(a_0,b_0)=a_o\times b_0 lcm(a0,b0)=ao×b0
所以 l c m ( a , b ) = l c m ( a 0 × d , b 0 × d ) = l c m ( a 0 , b 0 ) × d = a 0 × b 0 × d = a × b d lcm(a,b)=lcm(a_0\times d,b_0\times d)=lcm(a_0,b_0)\times d=a_0\times b_0 \times d = \frac{a \times b }{d} lcm(a,b)=lcm(a0×d,b0×d)=lcm(a0,b0)×d=a0×b0×d=da×b
证毕。

欧几里得算法

我们或许可以叫他辗转相除法?
任取 a , b ∈ N , b ≠ 0 , g c d ( a , b ) = g c d ( b , a m o d    b ) a , b \in N , b \ne 0, gcd(a,b) = gcd(b , a \mod b) a,bN,b=0,gcd(a,b)=gcd(b,amodb)
就是这个式子,证明就略了
代码如下

int gcd( a , b ) 
{ 
	return b ? gcd( b , a % b ) : a; 
} 

互质

定义

如果两个数的最大公约数为1,即 g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1,那么就称这两个数互质
对于三个数来说同理.

欧拉函数

定义

1 ⋯ N 1\cdots N 1N中与N互质的数的个数,被称为欧拉函数,记作 ϕ ( N ) \phi(N) ϕ(N)
求法:在筛因数的时候顺便 求解
代码如下

int phi( int x )
{
	int ans=x;
	for(int i=2;i*i<=x;i++)
	{
		if(x%i) continue;
		ans=ans/i*(i-1);
		while(x%i==0)n/=i;
	}
	if(n>1)
	ans=ans/n*(n-1);
	return ans ;
}

性质

  1. ∀ n > 1 , 1 ⋯ n 中 与 互 质 的 数 的 和 为 n × ϕ ( n ) / 2 \forall n > 1 , 1\cdots n中与互质的数的和为n\times \phi(n) / 2 n>1,1nn×ϕ(n)/2
  2. 若a,b互质,则 ϕ ( a b ) = ϕ ( a ) ϕ ( b ) \phi(ab)=\phi(a)\phi(b) ϕ(ab)=ϕ(a)ϕ(b)

就这就这,看完了的你不给个赞吗?
下面是同余时间!!!

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
C++是一种广泛使用的编程语言,它是由Bjarne Stroustrup于1979年在新泽西州美利山贝尔实验室开始设计开发的。C++是C语言的扩展,旨在提供更强大的编程能力,包括面向对象编程和泛型编程的支持。C++支持数据封装、继承和多态等面向对象编程的特性和泛型编程的模板,以及丰富的标准库,提供了大量的数据结构和算法,极大地提高了开发效率。12 C++是一种静态类型的、编译式的、通用的、大小写敏感的编程语言,它综合了高级语言和低级语言的特点。C++的语法与C语言非常相似,但增加了许多面向对象编程的特性,如类、对象、封装、继承和多态等。这使得C++既保持了C语言的低级特性,如直接访问硬件的能力,又提供了高级语言的特性,如数据封装和代码重用。13 C++的应用领域非常广泛,包括但不限于教育、系统开发、游戏开发、嵌入式系统、工业和商业应用、科研和高性能计算等领域。在教育领域,C++因其结构化和面向对象的特性,常被选为计算机科学和工程专业的入门编程语言。在系统开发领域,C++因其高效性和灵活性,经常被作为开发语言。游戏开发领域中,C++由于其高效性和广泛应用,在开发高性能游戏和游戏引擎中扮演着重要角色。在嵌入式系统领域,C++的高效和灵活性使其成为理想选择。此外,C++还广泛应用于桌面应用、Web浏览器、操作系统、编译器、媒体应用程序、数据库引擎、医疗工程和机器人等领域。16 学习C++的关键是理解其核心概念和编程风格,而不是过于深入技术细节。C++支持多种编程风格,每种风格都能有效地保证运行时间效率和空间效率。因此,无论是初学者还是经验丰富的程序员,都可以通过C++来设计和实现新系统或维护旧系统。3

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值