个人微信公众号:AI研习图书馆,欢迎关注~
深度学习知识及资源分享,学习交流,共同进步~
文章: ImageNet Classification with Deep Convolutional Neural Networks
1.引言
AlexNet,这篇文章可以算是深度学习真正意义上的的开山之作。发表以来,已经累计获得了6184次引用,并被广泛认为是业内最具深远影响的一篇文章。
作者创造了一个“大规模、有深度的卷积神经网络”。
2012年,当CNN第一次登上这个舞台,在前五测试错误率项目上达到15.4%的好成绩。这篇文章主要讨论了一种网络架构的实现。相比现在的架构,文中所讨论的布局结构相对简单,主要包括5个卷积层、最大池化层、dropout层,以及3个全连通层。该结构用于针对拥有1000个可能的图像类别进行分类。
2. 网络结构解析
AlexNet整体结构:
AlexNet的网络结构示意:
AlexNet包含6千万个参数和65万个神经元,包含