图像识别-AlexNet论文总结

AlexNet是深度学习的里程碑,2012年在ImageNet比赛中取得突破,包含5个卷积层和3个全连接层,使用ReLU激活函数、数据增强和dropout防止过拟合。它的成功在于Relu、LRN、多GPU训练和数据扩增等创新点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

个人微信公众号:AI研习图书馆,欢迎关注~

深度学习知识及资源分享,学习交流,共同进步~

文章: ImageNet Classification with Deep Convolutional Neural Networks

1.引言

AlexNet,这篇文章可以算是深度学习真正意义上的的开山之作。发表以来,已经累计获得了6184次引用,并被广泛认为是业内最具深远影响的一篇文章。

作者创造了一个“大规模、有深度的卷积神经网络”。

2012年,当CNN第一次登上这个舞台,在前五测试错误率项目上达到15.4%的好成绩。这篇文章主要讨论了一种网络架构的实现。相比现在的架构,文中所讨论的布局结构相对简单,主要包括5个卷积层、最大池化层、dropout层,以及3个全连通层。该结构用于针对拥有1000个可能的图像类别进行分类。

2. 网络结构解析

AlexNet整体结构:
在这里插入图片描述
AlexNet的网络结构示意:

在这里插入图片描述
AlexNet包含6千万个参数和65万个神经元,包含

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI研习图书馆

您的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值