服务器虚拟环境使用指南
此篇使用指南默认大家已经安装好了Anaconda,CUDA,GPU驱动
虚拟环境使用原则:
任用户禁止在已有的虚拟环境下安装软件包
任用户禁止在已有的虚拟环境下安装软件包
任用户禁止在已有的虚拟环境下安装软件包
第一部分:创建只属于自己的虚拟环境(本教程的以momo用户为例)
第一步:打开 Terminal
第二步:激活conda
source activate
这里的(base)是公用环境,不是自己的虚拟环境,不可以在此环境下安装东西
第三步:创建只属于自己的虚拟环境
这里的momo是环境的名字,使用者所起的环境名字要包含自己的用户名信息,例如:
所起环境名字一定要以自己的用户名作为前缀
这样命名方便管理,不按规则命名的环境将定时清理。
conda create -n momo_tensorflow python=3.8
第四步:激活自己刚刚创建的虚拟环境
conda activate momo_tensorflow
看到自己的命令行前面由(base) 变为了(momo_tensorflow)则说明自己创建的虚拟环境激活成功。
第五步:在只属于自己的环境下配置需要的软件包(本教程以tensorflow-gpu最新测试版为例)
本服务器已安装3090显卡驱动和cuda,不需要使用者自己配置,同时也禁止使用者自己配置其它版本的cuda和3090显卡驱动
pip install tf-nightly-gpu -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
第六步:如果需要可以配置Pytorch环境
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
第七步:如何退出当前虚拟环境
conda deactivate
执行一次上面的代码,退回到了(base)环境,再执行一次到了系统默认环境
第八步:服务器不使用时记得退出账户
服务器资源有限,所以不使用的时候尽可能退出账户
第二部分:如何指定固定的GPU运行代码
在python文件中加入下面的代码,该代码加在import之后,你的代码之前。
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"