服务器虚拟环境使用指南


此篇使用指南默认大家已经安装好了Anaconda,CUDA,GPU驱动

虚拟环境使用原则:

任用户禁止在已有的虚拟环境下安装软件包
任用户禁止在已有的虚拟环境下安装软件包
任用户禁止在已有的虚拟环境下安装软件包

第一部分:创建只属于自己的虚拟环境(本教程的以momo用户为例)

第一步:打开 Terminal

Terminal

第二步:激活conda

source activate

在这里插入图片描述
这里的(base)是公用环境,不是自己的虚拟环境,不可以在此环境下安装东西

第三步:创建只属于自己的虚拟环境

这里的momo是环境的名字,使用者所起的环境名字要包含自己的用户名信息,例如:
所起环境名字一定要以自己的用户名作为前缀

这样命名方便管理,不按规则命名的环境将定时清理。

conda create -n momo_tensorflow python=3.8

这里输入y

第四步:激活自己刚刚创建的虚拟环境

conda activate momo_tensorflow

看到自己的命令行前面由(base) 变为了(momo_tensorflow)则说明自己创建的虚拟环境激活成功。

在这里插入图片描述

第五步:在只属于自己的环境下配置需要的软件包(本教程以tensorflow-gpu最新测试版为例)

本服务器已安装3090显卡驱动和cuda,不需要使用者自己配置,同时也禁止使用者自己配置其它版本的cuda和3090显卡驱动

pip install tf-nightly-gpu -i http://pypi.douban.com/simple --trusted-host pypi.douban.com

第六步:如果需要可以配置Pytorch环境

conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge

第七步:如何退出当前虚拟环境

conda deactivate

执行一次上面的代码,退回到了(base)环境,再执行一次到了系统默认环境
在这里插入图片描述

第八步:服务器不使用时记得退出账户

服务器资源有限,所以不使用的时候尽可能退出账户
在这里插入图片描述

第二部分:如何指定固定的GPU运行代码

在python文件中加入下面的代码,该代码加在import之后,你的代码之前。

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值