编译原理学习笔记(十五)~最小化DFA

本文深入探讨了确定有限状态自动机(DFA)的最小化过程,通过实例详细解释了状态的可区分与不可区分概念,指导如何通过合并不可区分状态来简化DFA,达到状态数最少的目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念

        最小化:优化DFA,使其状态数最少。

        那么什么时候状态数是最少的呢?这里我们需要介绍两个新的名词:可区分不可区分

官方定义
        可区分:对于任何两个状态t和s,若从一状态出发接受输入字符串ω,而从另一状态出发不接受ω,或者从t出发和从s出发到达不同的接受状态,则称ω对状态t和s是可区分的。
        不可区分:设想任何输入序列ω对s和t均是不可区分的,则说明从s出发和从t出发,分析任何输入序列ω均得到相同结果。因此,s和t可以合并成一个状态
        通俗一点的来说,可区分状态可以理解为两个(或多个)状态根本不是一类,根据下一个输入的符号,不同状态得到的结果可能会出现不同。而不可区分状态就是,这两个(或多个)状态,无论下一个接收的符号是什么,得到的结果都是一样的。【定义理解不懂的,可以参考后面的例子思考,应该会容易一点点】
        综上所述,DFA的最小化就是找出DFA中所有的不可区分状态,把它们合并为一个状态,这样可以简化DFA的状态数,显得更加简洁。

举例说明

下图是一个没有最小化的DFA
在这里插入图片描述
现在我们对其进行最小化,那么怎么办呢?这里一般不好一步到位,需要我们慢慢测试【多试试就可以了】。
在这里插入图片描述
首先从上面的方法可以看出,我们先加上ABC为一类,D是一类。然后测试ABC是可区分还是不可区分的。

  • ABC接收a,到达的状态都是B
  • ABC接收b,到达的状态是C、D。其中AC接收b到达C,B接收b到达D。

从上的分析可以看出,ABC不是同一类的,属于可区分,因为在接收b的时候,出现了分歧。
然后再加上AC是一类,B单独一类,D单独一类。

  • AC接收a,到达的状态都是B
  • AC接收b,到达的状态都是C

从上面的分析我们可以发现,AC是一类,不可区分,因为无论输入a,还是b,它们最终到达的状态都是一样的,所以我们可以说它们是不可区分的。在最小化DFA中,AC是可以合并为一个状态的。
所以最后的最小化DFA就是:
在这里插入图片描述
注:解题没有固定的格式,需要凭借自己的理解去猜测,测试到底哪一组是不可区分。慢慢练习,自然就会熟悉的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海轰Pro

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值