【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(3):行列式的性质

前言

Hello!小伙伴!
非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~
 
自我介绍 ଘ(੭ˊᵕˋ)੭
昵称:海轰
标签:程序猿|C++选手|学生
简介:因C语言结识编程,随后转入计算机专业,有幸拿过一些国奖、省奖…已保研。目前正在学习C++/Linux/Python
学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!
 
机器学习小白阶段
文章仅作为自己的学习笔记 用于知识体系建立以及复习
知其然 知其所以然!

1.5 行列式的性质

转置行列式

n阶行列式D:

D = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . a n 1 a n 2 . . . a n n ∣ D=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2n}\\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} D=a11a21..an1a12a22..an2.........a1na2n..ann

a i j = a j i a_{ij}=a_{ji} aij=aji,得到

D T = ∣ a 11 a 21 . . . a n 1 a 12 a 22 . . . a n 2 . . . . . . a 1 n a 2 n . . . a n n ∣ D^T=\begin{vmatrix} a_{11} & a_{21} &... & a_{n1}\\ a_{12} & a_{22} & ... &a_{n2}\\ . & . & & . \\ . & . & & . \\ a_{1n} & a_{2n} &... & a_{nn}\\ \end{vmatrix} DT=a11a12..a1na21a22..a2n.........an1an2..ann

行列式 D T D^T DT称为行列式 D D D的转置行列式

性质1

内容

行列式与它的转置行列式相等

证明

D = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . a n 1 a n 2 . . . a n n ∣ D=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2n}\\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} D=a11a21..an1a12a22..an2.........a1na2n..ann D T D^T DT D D D的转置行列式

再设 D T = ∣ b 11 b 12 . . . b 1 n b 21 b 22 . . . b 2 n . . . . . . b n 1 b n 2 . . . b n n ∣ D^T=\begin{vmatrix} b_{11} & b_{12} &... & b_{1n}\\ b_{21} & b_{22} & ... &b_{2n}\\ . & . & & . \\ . & . & & . \\ b_{n1} & b_{n2} &... & b_{nn}\\ \end{vmatrix} DT=b11b21..bn1b12b22..bn2.........b1nb2n..bnn

又因为 我们知道

D T = ∣ a 11 a 21 . . . a n 1 a 12 a 22 . . . a n 2 . . . . . . a 1 n a 2 n . . . a n n ∣ D^T=\begin{vmatrix} a_{11} & a_{21} &... & a_{n1}\\ a_{12} & a_{22} & ... &a_{n2}\\ . & . & & . \\ . & . & & . \\ a_{1n} & a_{2n} &... & a_{nn}\\ \end{vmatrix} DT=a11a12..a1na21a22..a2n.........an1an2..ann

所以有: b i j = a j i b_{ij}=a_{ji} bij=aji

推出
D T = ∣ b 11 b 12 . . . b 1 n b 21 b 22 . . . b 2 n . . . . . . b n 1 b n 2 . . . b n n ∣ D^T=\begin{vmatrix} b_{11} & b_{12} &... & b_{1n}\\ b_{21} & b_{22} & ... &b_{2n}\\ . & . & & . \\ . & . & & . \\ b_{n1} & b_{n2} &... & b_{nn}\\ \end{vmatrix} DT=b11b21..bn1b12b22..bn2.........b1nb2n..bnn= ∑ ( − 1 ) t b 1 p 1 b 2 p 2 . . . b n p n \sum(-1)^tb_{1p_1}b_{2p_2}...b_{np_n} (1)tb1p1b2p2...bnpn= ∑ ( − 1 ) t a p 1 1 a p 2 2 . . . a p n n \sum(-1)^ta_{p_11}a_{p_22}...a_{p_nn} (1)tap11ap22...apnn(利用 b i j = a j i b_{ij}=a_{ji} bij=aji)

又因为

∑ ( − 1 ) t a 1 p 1 a 2 p 2 . . . a n p n = ∑ ( − 1 ) t a p 1 1 a p 2 2 . . . a p n n \sum(-1)^ta_{1p_1}a_{2p_2}...a_{np_n}=\sum(-1)^ta_{p_11}a_{p_22}...a_{p_nn} (1)ta1p1a2p2...anpn=(1)tap11ap22...apnn

所以

D T = ∑ ( − 1 ) t a p 1 1 a p 2 2 . . . a p n n = ∑ ( − 1 ) t a 1 p 1 a 2 p 2 . . . a n p n = D D^T=\sum(-1)^ta_{p_11}a_{p_22}...a_{p_nn}=\sum(-1)^ta_{1p_1}a_{2p_2}...a_{np_n}=D DT=(1)tap11ap22...apnn=(1)ta1p1a2p2...anpn=D

证明完成!

性质2

内容

互换行列式的两行(列),行列式变号

证明

设n阶行列式D

D = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . a n 1 a n 2 . . . a n n ∣ D=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2n}\\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} D=a11a21..an1a12a22..an2.........a1na2n..ann

交换第i、j行

D 1 D_1 D1

我们设

D 1 = ∣ b 11 b 12 . . . b 1 n b 21 b 22 . . . b 2 n . . . . . . b n 1 b n 2 . . . b n n ∣ D_1=\begin{vmatrix} b_{11} & b_{12} &... & b_{1n}\\ b_{21} & b_{22} & ... &b_{2n}\\ . & . & & . \\ . & . & & . \\ b_{n1} & b_{n2} &... & b_{nn}\\ \end{vmatrix} D1=b11b21..bn1b12b22..bn2.........b1nb2n..bnn

k ≠ i , j k\neq i,j k=i,j时,有 b k p = a k p b_{kp}=a_{kp} bkp=akp
k = i , j k=i,j k=i,j时,有 b i p = a j p b_{ip}=a_{jp} bip=ajp b j p = a i p b_{jp}=a_{ip} bjp=aip

简单的说

  • k ≠ i , j k\neq i,j k=i,j,也就是不属于交换的那两行,b与a就是完全的对应关系;
  • k = i , j k=i,j k=i,j时,就是交换的那两行,b与a行之间的就是相反的,列是一样的

D 1 = ∣ b 11 b 12 . . . b 1 n b 21 b 22 . . . b 2 n . . . . . . b n 1 b n 2 . . . b n n ∣ = ∑ ( − 1 ) t b 1 p 1 . . . b i p i . . . b j p j . . . b n p n = ∑ ( − 1 ) t a 1 p 1 . . . a j p i . . . a i p j . . . a n p n D_1=\begin{vmatrix} b_{11} & b_{12} &... & b_{1n}\\ b_{21} & b_{22} & ... &b_{2n}\\ . & . & & . \\ . & . & & . \\ b_{n1} & b_{n2} &... & b_{nn}\\ \end{vmatrix}=\sum(-1)^tb_{1p_1}...b_{ip_i}...b_{jp_j}...b_{np_n}=\sum(-1)^ta_{1p_1}...a_{jp_i}...a_{ip_j}...a_{np_n} D1=b11b21..bn1b12b22..bn2.........b1nb2n..bnn=(1)tb1p1...bipi...bjpj...bnpn=(1)ta1p1...ajpi...aipj...anpn

D = ∑ ( − 1 ) t a 1 p 1 . . . a i p i . . . a j p j . . . a n p n D=\sum(-1)^ta_{1p_1}...a_{ip_i}...a_{jp_j}...a_{np_n} D=(1)ta1p1...aipi...ajpj...anpn

对比 发现只交换了行坐标

从1…i…j…n 变成了 1…j…i…n

很明显,和全排列中交换任意两个元素一样,奇偶性会改变
也就是逆序数+1或-1

其实就是在行列式这里就是相当于奇偶性发生一次变化,就是乘了一个-1

所以

D 1 = − D D_1=-D D1=D

证明完成!

性质3

内容

行列式中的某一行(列)中的所有元素都乘以同一数k,等于用数k乘此行列式

证明

设行列式 D = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . a n 1 a n 2 . . . a n n ∣ D=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2n}\\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} D=a11a21..an1a12a22..an2.........a1na2n..ann

假设第i行所有元素同时乘以k,有

D 1 = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . a i 1 ∗ k a i 2 ∗ k . a i n ∗ k . . . a n 1 a n 2 . . . a n n ∣ D_1=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2n}\\ . & . & & . \\ a_{i1}*k & a_{i2}*k& . & a_{in}*k\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} D1=a11a21.ai1k.an1a12a22.ai2k.an2..........a1na2n.aink.ann

化简

D 1 = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . a i 1 ∗ k a i 2 ∗ k . a i n ∗ k . . . a n 1 a n 2 . . . a n n ∣ = ∑ ( − 1 ) t a 1 p 1 a 2 p 2 . . . k ∗ a i p i . . . a n p n = k ∗ ∑ ( − 1 ) t a 1 p 1 a 2 p 2 . . . a i p i . . . a n p n D_1=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2n}\\ . & . & & . \\ a_{i1}*k & a_{i2}*k& . & a_{in}*k\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix}=\sum(-1)^ta_{1p_1}a_{2p_2}...k*a_{ip_i}...a_{np_n}=k*\sum(-1)^ta_{1p_1}a_{2p_2}...a_{ip_i}...a_{np_n} D1=a11a21.ai1k.an1a12a22.ai2k.an2..........a1na2n.aink.ann=(1)ta1p1a2p2...kaipi...anpn=k(1)ta1p1a2p2...aipi...anpn

证明完成!

同理,列的情形也是一样的

性质4

内容

行列式中如果有两行(列)元素成比列,则此行列式等于0

证明

设行列式 D = ∣ a 11 a 12 . . . a 1 n . . . a i 1 a i 2 . . . a i n . . . a j 1 a j 2 . . . a j n . . . a n 1 a n 2 . . . a n n ∣ D=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1} & a_{i2} & ... &a_{in}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} D=a11.ai1.aj1.an1a12.ai2.aj2.an2............a1n.ain.ajn.ann

其中第i行元素与第j行元素成比例,也就是 a j p = k ∗ a j p a_{jp}=k*a_{jp} ajp=kajp

D = ∣ a 11 a 12 . . . a 1 n . . . a i 1 a i 2 . . . a i n . . . a j 1 a j 2 . . . a j n . . . a n 1 a n 2 . . . a n n ∣ = ∑ ( − 1 ) t a 1 p 1 . . . a i p i . . . a j p j . . . a n p n D=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1} & a_{i2} & ... &a_{in}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} =\sum(-1)^ta_{1p_1}...a_{ip_i}...a_{jp_j}...a_{np_n} D=a11.ai1.aj1.an1a12.ai2.aj2.an2............a1n.ain.ajn.ann=(1)ta1p1...aipi...ajpj...anpn

因为 a j p = k ∗ a j p a_{jp}=k*a_{jp} ajp=kajp

所以

∑ ( − 1 ) t a 1 p 1 . . . a i p i . . . a j p j . . . a n p n = ∑ ( − 1 ) t a 1 p 1 . . . a i p i . . . k ∗ a i p i . . . a n p n = k ∗ ∑ ( − 1 ) t a 1 p 1 . . . a i p i . . . a i p i . . . a n p n = D \sum(-1)^ta_{1p_1}...a_{ip_i}...a_{jp_j}...a_{np_n}=\sum(-1)^ta_{1p_1}...a_{ip_i}...k*a_{ip_i}...a_{np_n}=k*\sum(-1)^ta_{1p_1}...a_{ip_i}...a_{ip_i}...a_{np_n}=D (1)ta1p1...aipi...ajpj...anpn=(1)ta1p1...aipi...kaipi...anpn=k(1)ta1p1...aipi...aipi...anpn=D

如果此时对换第i行与第j行

行列式 D D D依然不会发生变化

因为对换后,D还是原来的值

k ∗ ∑ ( − 1 ) t a 1 p 1 . . . a i p i . . . a i p i . . . a n p n = D k*\sum(-1)^ta_{1p_1}...a_{ip_i}...a_{ip_i}...a_{np_n}=D k(1)ta1p1...aipi...aipi...anpn=D(对换后 其实和原来一样)

但是因为任意两行互换后,一定会发生变号,变为-D

综上,有

D = − D D=-D D=D

得到

D = 0 D=0 D=0

证明完成!

性质5

内容

若行列式中的某一行(列)的元素都是两数之和,例如第i列的元素都是两数之和

D = ∣ a 11 a 12 . . . ( a 1 i + b 1 i ) . . . a 1 n a 21 a 22 . . . ( a 2 i + b 2 i ) . . . a 2 n . . . . . . . . . a n 1 a n 2 . . . ( a n i + b n i ) . . . a n n ∣ D=\begin{vmatrix} a_{11} & a_{12} &...&(a_{1i}+b_{1i})&... & a_{1n}\\ a_{21} & a_{22} & ... &(a_{2i}+b_{2i})&...&a_{2n}\\ . & . & & . \\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... &(a_{ni}+b_{ni})&...& a_{nn}\\ \end{vmatrix} D=a11a21...an1a12a22...an2.........(a1i+b1i)(a2i+b2i)...(ani+bni).........a1na2nann

D = ∣ a 11 a 12 . . . a 1 i . . . a 1 n a 21 a 22 . . . a 2 i . . . a 2 n . . . . . . . . . a n 1 a n 2 . . . a n i . . . a n n ∣ + ∣ a 11 a 12 . . . b 1 i . . . a 1 n a 21 a 22 . . . b 2 i . . . a 2 n . . . . . . . . . a n 1 a n 2 . . . b n i . . . a n n ∣ D=\begin{vmatrix} a_{11} & a_{12} &...&a_{1i}&... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2i}&...&a_{2n}\\ . & . & & . \\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... &a_{ni}&...& a_{nn}\\ \end{vmatrix} +\begin{vmatrix} a_{11} & a_{12} &...&b_{1i}&... & a_{1n}\\ a_{21} & a_{22} & ... &b_{2i}&...&a_{2n}\\ . & . & & . \\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... &b_{ni}&...& a_{nn}\\ \end{vmatrix} D=a11a21...an1a12a22...an2.........a1ia2i...ani.........a1na2nann+a11a21...an1a12a22...an2.........b1ib2i...bni.........a1na2nann

证明

D = ∣ a 11 a 12 . . . ( a 1 i + b 1 i ) . . . a 1 n a 21 a 22 . . . ( a 2 i + b 2 i ) . . . a 2 n . . . . . . . . . a n 1 a n 2 . . . ( a n i + b n i ) . . . a n n ∣ = ∑ ( − 1 ) t a 1 p 1 . . . ( a i p i + b i p i ) . . . a n p n = ∑ ( − 1 ) t ( a 1 p 1 . . . a i p i . . . a n p n + a 1 p 1 . . . b i p i . . . a n p n ) = ∑ ( − 1 ) t a 1 p 1 . . . a i p i . . . a n p n + ∑ ( − 1 ) t a 1 p 1 . . . b i p i . . . a n p n = ∣ a 11 a 12 . . . a 1 i . . . a 1 n a 21 a 22 . . . a 2 i . . . a 2 n . . . . . . . . . a n 1 a n 2 . . . a n i . . . a n n ∣ + ∣ a 11 a 12 . . . b 1 i . . . a 1 n a 21 a 22 . . . b 2 i . . . a 2 n . . . . . . . . . a n 1 a n 2 . . . b n i . . . a n n ∣ D=\begin{vmatrix} a_{11} & a_{12} &...&(a_{1i}+b_{1i})&... & a_{1n}\\ a_{21} & a_{22} & ... &(a_{2i}+b_{2i})&...&a_{2n}\\ . & . & & . \\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... &(a_{ni}+b_{ni})&...& a_{nn}\\ \end{vmatrix} =\sum(-1)^ta_{1p_1}...(a_{ip_i}+b_{ip_i})...a_{np_n} \\=\sum(-1)^t(a_{1p_1}...a_{ip_i}...a_{np_n}+a_{1p_1}...b_{ip_i}...a_{np_n})\\=\sum(-1)^ta_{1p_1}...a_{ip_i}...a_{np_n}+\sum(-1)^ta_{1p_1}...b_{ip_i}...a_{np_n}\\=\begin{vmatrix} a_{11} & a_{12} &...&a_{1i}&... & a_{1n}\\ a_{21} & a_{22} & ... &a_{2i}&...&a_{2n}\\ . & . & & . \\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... &a_{ni}&...& a_{nn}\\ \end{vmatrix} +\begin{vmatrix} a_{11} & a_{12} &...&b_{1i}&... & a_{1n}\\ a_{21} & a_{22} & ... &b_{2i}&...&a_{2n}\\ . & . & & . \\ . & . & & . \\ . & . & & . \\ a_{n1} & a_{n2} &... &b_{ni}&...& a_{nn}\\ \end{vmatrix} D=a11a21...an1a12a22...an2.........(a1i+b1i)(a2i+b2i)...(ani+bni).........a1na2nann=(1)ta1p1...(aipi+bipi)...anpn=(1)t(a1p1...aipi...anpn+a1p1...bipi...anpn)=(1)ta1p1...aipi...anpn+(1)ta1p1...bipi...anpn=a11a21...an1a12a22...an2.........a1ia2i...ani.........a1na2nann+a11a21...an1a12a22...an2.........b1ib2i...bni.........a1na2nann

证明完成!

性质6

内容

把行列式的某一行(列)的各元素乘以同一个数然后再加到另一行(列)对应的元素上去,行列式不变

证明

设行列式 D = ∣ a 11 a 12 . . . a 1 n . . . a i 1 a i 2 . . . a i n . . . a j 1 a j 2 . . . a j n . . . a n 1 a n 2 . . . a n n ∣ D=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1} & a_{i2} & ... &a_{in}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} D=a11.ai1.aj1.an1a12.ai2.aj2.an2............a1n.ain.ajn.ann

对第j行乘以k,再加到第i行,得到

D 1 = ∣ a 11 a 12 . . . a 1 n . . . a i 1 + k ∗ a j 1 a i 2 + k ∗ a j 2 . . . a i n + k ∗ a j n . . . a j 1 a j 2 . . . a j n . . . a n 1 a n 2 . . . a n n ∣ D_1=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1}+k*a_{j1} & a_{i2}+k*a_{j2} & ... &a_{in}+k*a_{jn}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} D1=a11.ai1+kaj1.aj1.an1a12.ai2+kaj2.aj2.an2............a1n.ain+kajn.ajn.ann

由性质5得

D 1 = ∣ a 11 a 12 . . . a 1 n . . . a i 1 + k ∗ a j 1 a i 2 + k ∗ a j 2 . . . a i n + k ∗ a j n . . . a j 1 a j 2 . . . a j n . . . a n 1 a n 2 . . . a n n ∣ = ∣ a 11 a 12 . . . a 1 n . . . a i 1 a i 2 . . . a i n . . . a j 1 a j 2 . . . a j n . . . a n 1 a n 2 . . . a n n ∣ + ∣ a 11 a 12 . . . a 1 n . . . k ∗ a j 1 k ∗ a j 2 . . . k ∗ a j n . . . a j 1 a j 2 . . . a j n . . . a n 1 a n 2 . . . a n n ∣ D_1=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1}+k*a_{j1} & a_{i2}+k*a_{j2} & ... &a_{in}+k*a_{jn}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} =\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1} & a_{i2} & ... &a_{in}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} +\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ k*a_{j1} & k*a_{j2} & ... &k*a_{jn}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} D1=a11.ai1+kaj1.aj1.an1a12.ai2+kaj2.aj2.an2............a1n.ain+kajn.ajn.ann=a11.ai1.aj1.an1a12.ai2.aj2.an2............a1n.ain.ajn.ann+a11.kaj1.aj1.an1a12.kaj2.aj2.an2............a1n.kajn.ajn.ann

由性质4得

∣ a 11 a 12 . . . a 1 n . . . k ∗ a j 1 k ∗ a j 2 . . . k ∗ a j n . . . a j 1 a j 2 . . . a j n . . . a n 1 a n 2 . . . a n n ∣ = 0 \begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ k*a_{j1} & k*a_{j2} & ... &k*a_{jn}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} =0 a11.kaj1.aj1.an1a12.kaj2.aj2.an2............a1n.kajn.ajn.ann=0

所以

D 1 = ∣ a 11 a 12 . . . a 1 n . . . a i 1 + k ∗ a j 1 a i 2 + k ∗ a j 2 . . . a i n + k ∗ a j n . . . a j 1 a j 2 . . . a j n . . . a n 1 a n 2 . . . a n n ∣ = ∣ a 11 a 12 . . . a 1 n . . . a i 1 a i 2 . . . a i n . . . a j 1 a j 2 . . . a j n . . . a n 1 a n 2 . . . a n n ∣ = D D_1=\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1}+k*a_{j1} & a_{i2}+k*a_{j2} & ... &a_{in}+k*a_{jn}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix} =\begin{vmatrix} a_{11} & a_{12} &... & a_{1n}\\ . & . & & . \\ a_{i1} & a_{i2} & ... &a_{in}\\ . & . & & . \\ a_{j1} & a_{j2} & ... &a_{jn}\\ . & . & & . \\ a_{n1} & a_{n2} &... & a_{nn}\\ \end{vmatrix}=D D1=a11.ai1+kaj1.aj1.an1a12.ai2+kaj2.aj2.an2............a1n.ain+kajn.ajn.ann=a11.ai1.aj1.an1a12.ai2.aj2.an2............a1n.ain.ajn.ann=D

证明完成!

结语

说明:

  • 参考于 课本《线性代数》第五版 同济大学数学系编
  • 配合书中概念讲解 结合了自己的一些理解及思考

文章仅作为学习笔记,记录从0到1的一个过程

希望对您有所帮助,如有错误欢迎小伙伴指正~

我是 海轰ଘ(੭ˊᵕˋ)੭

如果您觉得写得可以的话,请点个赞吧

谢谢支持 ❤️

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海轰Pro

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值