【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(10):向量组及其线性组合

前言

Hello!小伙伴!
非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~
 
自我介绍 ଘ(੭ˊᵕˋ)੭
昵称:海轰
标签:程序猿|C++选手|学生
简介:因C语言结识编程,随后转入计算机专业,有幸拿过一些国奖、省奖…已保研。目前正在学习C++/Linux/Python
学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!
 
机器学习小白阶段
文章仅作为自己的学习笔记 用于知识体系建立以及复习
知其然 知其所以然!

往期文章

【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(1):二阶与三阶行列式、全排列及其逆序数

【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(2):n阶行列式、对换

【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(3):行列式的性质

【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(4):行列式按行(列)展开

【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(5):克拉默法则

【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(6):矩阵的运算

【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(7):逆矩阵

【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(8):矩阵的初等变换

【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(9):矩阵的秩、线性方程组的解

4.1 向量组及其线性组合

定义1

1. n维向量

定义:n个有次序的数 a 1 , a 2 , . . . . , a n a_1,a_2,....,a_n a1,a2,....,an所组成的数组,其中这n个数成为该向量的n个分量,第i个数 a i a_{i} ai称为第i个分量

2. 实向量

定义:向量中的所有的分量均为实数

3. 复向量

定义:向量中至少有一个分量为复数

4. n维列向量a

a = [ a 1 a 2 . . . a n ] a =\begin{bmatrix} a_1\\ a_2\\ .\\ .\\ .\\ a_n \end{bmatrix} a=a1a2...an

5. n维行向量b

b = ( b 1 , b 2 , . . . , b n ) b = (b_1,b_2,...,b_n) b=(b1,b2,...,bn)

一般来说,列向量用黑体小写字母 α 、 β \alpha 、\beta αβ等表示,行向量用 α T 、 β T \alpha^{T}、\beta^{T} αTβT等表示
无特殊说明时,一般看作为列向量

6. 三维向量空间

定义:三维向量的全体所组成的集合

R 3 = { r = ( x , y , z ) T ∣ x , y , z ∈ R } \mathbb{R}^3 = \{r = (x, y, z)^T | x, y, z \in \mathbb{R} \} R3={r=(x,y,z)Tx,y,zR}

称为三维向量空间

在讨论向量的运算时,将向量看作有向线段

在讨论向量集合时,则把向量r看作以r为向径的点P,从而把点P的轨迹作为向量集的图形

向径:一般指位置矢量。在某一时刻,以坐标原点为起点,以运动质点所在位置为终点的有向线段

例如点集 Π = { P ( x , y , z ) ∣ a x + b y + c z = d \Pi = \{ P(x, y, z) | ax + by + cz = d Π={P(x,y,z)ax+by+cz=d是一个平面(a、b、c不全为0)

假设a = b = c = 1 d = 0
则为 x + y + z = 0
稍微变形一下 z = - x - y
这样就容易看出其是一个平面了

于是向量集 { r = ( x , y , z ) T ∣ a x + b y + c z = d } \{ r = (x, y, z)^T | ax + by + cz = d \} {r=(x,y,z)Tax+by+cz=d}

也叫做向量空间 R 3 \mathbb{R}^3 R3中的平面,并把 Π \Pi Π作为它的图形

7. n维向量空间

n维向量的全部所组成的集合

R n = { x = ( x 1 , x 2 , . . . . , x n ) T ∣ x 1 , x 2 , . . . , x n ∈ R } \mathbb{R}^n = \{ x = (x_1, x_2,...., x_n)^T | x_1,x_2,...,x_n \in \mathbb{R} \} Rn={x=(x1,x2,....,xn)Tx1,x2,...,xnR}

其中n维向量的集合 { x = ( x 1 , x 2 , . . . , x n ) T ∣ a 1 x 1 + a 2 x 2 + . . . . + a n x n = b \{ x = (x_1,x_2,...,x_n)^T | a_1x_1 + a_2x_2 +.... + a_nx_n = b {x=(x1,x2,...,xn)Ta1x1+a2x2+....+anxn=b叫做n维向量空间 R n 中 的 n − 1 维 超 平 面 \mathbb{R}^n中的n - 1维超平面 Rnn1

8. 向量组

定义:若干个同维数的列向量(或同维数的行向量)所组成的集合

一个 m * n 矩阵的全体列向量 是一个含有 n个 m维列向量的向量组
全体行向量是一个含 m个 n维行向量的向量组

矩阵的列向量组和行向量组都是只含 有限个向量 的向量组;反之,一个含有限个向量组总可以构成一个矩阵

比如,m个n维列向量所组成的向量组 A : a 1 , a 2 , . . . , a m ( a i , i ∈ [ 1 , m ] 表 示 一 个 n 维 列 向 量 ) A:a_1,a_2,...,a_m(a_i,i \in [1,m] 表示一个n维列向量) A:a1,a2,...,am(ai,i[1,m]n)可以构成一个n * m 矩阵
A = ( a 1 , a 2 , . . . , a m ) A = (a_1,a_2,...,a_m) A=(a1,a2,...,am)

m个n维行向量所组成的向量 B : β 1 T , β 2 T , . . . , β m T B: \beta_1^T, \beta_2^T,...,\beta_m^T B:β1T,β2T,...,βmT构成一个m * n 矩阵

B = ( β 1 T β 2 T . . . β m T ) B = \begin{pmatrix} \beta_1^T\\ \beta_2^T \\ .\\ .\\ .\\ \beta_m^T \\ \end{pmatrix} B=β1Tβ2T...βmT

β i \beta_i βi为列向量

总之,含有有限个向量的有序向量组可以与矩阵一一对应

定义2

(1)给定向量组 A : a 1 , a 2 , . . . , a m A:a_1,a_2,...,a_m A:a1,a2,...,am,对于任何一组实数 k 1 , k 2 , . . . , k m k_1,k_2,...,k_m k1,k2,...,km,表达式 k 1 a 1 + k 2 a 2 + . . . + k m a m k_1a_1 + k_2a_2 + ... + k_m a_m k1a1+k2a2+...+kmam称为向量组A的一个线性组合, k 1 , k 2 . . . . , k m k_1,k_2 .... , k_m k1,k2....,km称为这个线性组合的系数

(2)给定向量组 A : a 1 , a 2 , . . . , a m A:a_1,a_2,...,a_m A:a1,a2,...,am和向量b,如果存在一组数 λ 1 , λ 2 , . . . , λ m \lambda_1,\lambda_2,...,\lambda_m λ1,λ2,...,λm,使得 b = λ 1 a 1 + λ 2 a 2 + . . . . + λ m a m b = \lambda_1a_1 + \lambda_2a_2 + .... + \lambda_ma_m b=λ1a1+λ2a2+....+λmam

(3)则向量b是向量组A的线性表示,也就是说方程组 x 1 a 1 + x 2 a 2 + . . . + x m a m = b x_1a_1 + x_2a_2 + ... + x_ma_m = b x1a1+x2a2+...+xmam=b有解

定理1

向量 b b b能由向量 A : a 1 , a 2 , . . . , a m A:a_1,a_2,...,a_m A:a1,a2,...,am线性表示的充分必要条件是矩阵 A = ( a 1 , a 2 , . . . , a m ) A=(a_1,a_2,...,a_m) A=(a1,a2,...,am)的秩等于矩阵 B = ( a 1 , a 2 , . . . a m , b ) B = (a_1,a_2,...a_m,b) B=(a1,a2,...am,b)的秩

其实就是方程组 x 1 a 1 + x 2 a 2 + . . . + x m a m = b x_1a_1 + x_2a_2 + ... + x_ma_m = b x1a1+x2a2+...+xmam=b有解
因为线性方程组 A x = b Ax=b Ax=b有解,充分必要条件是 R ( A ) = R ( A , b ) R(A)=R(A,b) R(A)=R(A,b)(上一章的定理5)

定义3

设有两个向量组 A : a 1 , a 2 , . . . , a m A:a_1,a_2,...,a_m A:a1,a2,...,am B : b 1 , b 2 , . . . . , b l B:b_1,b_2,....,b_l B:b1,b2,....,bl,若B组中的每个向量都能由向量组A线性表示,则称向量组B能由向量组A线性表示。

若向量组A与向量组B互相线性表示,则称这两个向量组等价

设向量组 A = ( a 1 , a 2 , . . . , a m ) A = (a_1,a_2,...,a_m) A=(a1,a2,...,am),向量组 B = ( b 1 , b 2 , . . . , b l ) B=(b_1,b_2,...,b_l) B=(b1,b2,...,bl)

B B B能由 A A A线性表示 那么对每个向量 b j ( j = 1 , 2 , . . . , l ) b_j(j = 1,2,...,l) bj(j=1,2,...,l)

存在数 k 1 j , k 2 j , . . . , k m j k_{1j},k_{2j},...,k_{mj} k1j,k2j,...,kmj,使得

b j = k 1 j a 1 + k 2 j a 2 + . . . + k m j a m = ( a 1 , a 2 , . . . , a m ) ( k 1 j k 2 j . . . k m j ) b_j = k_{1j}a_1 + k_{2j}a_2 + ... + k_{mj}a_m = (a_1,a_2,...,a_m)\begin{pmatrix} k_{1j}\\ k_{2j}\\ .\\ .\\ .\\ k_{mj} \end{pmatrix} bj=k1ja1+k2ja2+...+kmjam=(a1,a2,...,am)k1jk2j...kmj

从而得到

( b 1 , b 2 , . . . . , b l ) = ( a 1 , a 2 , . . . , a m ) ( k 11 k 12 . . . k 1 l k 21 k 22 . . . k 2 l . . . . . . . . . k m 1 k m 2 . . . k m l ) (b_1,b_2,....,b_l) = (a_1,a_2,...,a_m)\begin{pmatrix} k_{11} & k_{12} & ... & k_{1l}\\ k_{21} & k_{22} & ... & k_{2l}\\ . & . & & .\\ . & . & & .\\ . & . & & .\\ k_{m1} & k_{m2} & ... & k_{ml}\\ \end{pmatrix} (b1,b2,....,bl)=(a1,a2,...,am)k11k21...km1k12k22...km2.........k1lk2l...kml

进而
B = A K B = AK B=AK
其中矩阵 K m ∗ l = ( k i j ) K_{m * l} = (k_{ij}) Kml=(kij)则称为这一线性表示的系数矩阵

上面向量组A、B都是使用列向量组进行组合的,现在来讨论为行向量组来组成A、B


A = ( a 1 T a 2 T . . . a m T ) B = ( b 1 T b 2 T . . . b l T ) A=\begin{pmatrix} a_1^T\\ a_2^T\\ .\\ .\\ .\\ a_m^T \end{pmatrix} \quad B =\begin{pmatrix} b_1^T\\ b_2^T\\ .\\ .\\ .\\ b_l^T \end{pmatrix} A=a1Ta2T...amTB=b1Tb2T...blT

因为B中的任意一条向量都可以用 A A A线性表示

那么有

b j T = k j 1 a 1 T + k j 2 a 2 T + . . . + k j m a m T = ( k j 1 , k j 2 , . . . , k j m ) ( a 1 T a 2 T . . . a m T ) ( j ∈ [ 1 , l ] ) b_j^T = k_{j1}a_1^T + k_{j2}a_2^T + ... + k_{jm}a_m^T =(k_{j1},k_{j2},...,k_{jm})\begin{pmatrix} a_1^T\\ a_2^T\\ .\\ .\\ .\\ a_m^T \end{pmatrix} (j \in [1,l]) bjT=kj1a1T+kj2a2T+...+kjmamT=(kj1,kj2,...,kjm)a1Ta2T...amT(j[1,l])

进而得到

( b 1 T b 2 T . . . b l T ) = ( k 11 k 12 . . . k 1 m k 21 k 22 . . . k 2 m . . . . . . . . . k l 1 k l 2 . . . k l m ) ( a 1 T a 2 T . . . a m T ) \begin{pmatrix} b_1^T\\ b_2^T\\ .\\ .\\ .\\ b_l^T \end{pmatrix} =\begin{pmatrix} k_{11} & k_{12} & ... & k_{1m}\\ k_{21} & k_{22} & ... & k_{2m}\\ . & . & & .\\ . & . & & .\\ . & . & & .\\ k_{l1} & k_{l2} & ... & k_{lm}\\ \end{pmatrix} \begin{pmatrix} a_1^T\\ a_2^T\\ .\\ .\\ .\\ a_m^T \end{pmatrix} b1Tb2T...blT=k11k21...kl1k12k22...kl2.........k1mk2m...klma1Ta2T...amT

推出 B = K A B = K A B=KA

由以上可知,若 C m ∗ n = A m ∗ l B l ∗ n C_{m * n} = A_{m * l} B_{l * n} Cmn=AmlBln,则矩阵C的列向量组都能由矩阵A的列向量组线性表示,B则为这一表示的系数矩阵

C C C对应上式中的 B B B A A A对应 A A A,那么 B B B就对应 K ( B = A K ) K(B = AK) KB=AK

( c 1 , c 2 , . . . , c n ) = ( a 1 , a 2 , . . . , a l ) ( b 11 b 12 . . . . b 1 n b 21 b 22 . . . . b 2 n . . . . . . . . . b l 1 b l 2 . . . . b l n ) (c_1,c_2,...,c_n) = (a_1,a_2,...,a_l)\begin{pmatrix} b_{11} & b_{12} & .... & b_{1n} \\ b_{21} & b_{22} & .... & b_{2n} \\ . & . & & .\\ . & . & & .\\ . & . & & .\\ b_{l1} & b_{l2} & .... & b_{ln} \\ \end{pmatrix} (c1,c2,...,cn)=(a1,a2,...,al)b11b21...bl1b12b22...bl2............b1nb2n...bln

同时,若C的行向量组都可以由B的行向量组线性表示,那么A就为这一表示的系数矩阵

利用 B = K A B = KA B=KA 对应这里的 C = A B C=AB C=AB
得到 A就是系数矩阵

定理2

向量组 B : b 1 , b 2 , . . . , b l B:b_1,b_2,...,b_l B:b1,b2,...,bl能由向量组 A : a 1 , a 2 , . . . , a m A:a_1,a_2,...,a_m A:a1,a2,...,am线性表示的充分必要条件是矩阵 A = ( a 1 , a 2 , . . . , a m ) A= (a_1,a_2,...,a_m) A=(a1,a2,...,am)的秩等于矩阵 ( A , B ) = ( a 1 , . . . , a m , b 1 , . . . , b l ) (A,B) = (a_1,...,a_m,b_1,...,b_l) (A,B)=(a1,...,am,b1,...,bl)的秩,即 R ( A ) = R ( A , B ) R(A) = R(A, B) R(A)=R(A,B)

说明

因为 B B B可以由 A A A进行线性表示

那么就存在一个系数矩阵 K K K,使得 B = A K B = AK B=AK

也就可以说

A X = B AX = B AX=B 至少存在一个解

又因为

线性方程组 A x = b Ax=b Ax=b有解的充分必要条件是 R ( A ) = R ( A , b ) R(A)=R(A,b) R(A)=R(A,b)

所以 R ( A ) = R ( A , B ) R(A) = R(A, B) R(A)=R(A,B)

推论

向量组 A : a 1 , a 2 , . . . , a m A:a_1,a_2,...,a_m A:a1,a2,...,am与向量组
B : b 1 , b 2 , . . . , b l B:b_1,b_2,...,b_l B:b1,b2,...,bl等价的充分必要条件是
R ( A ) = R ( B ) = R ( A , B ) R(A) = R(B) = R(A, B) R(A)=R(B)=R(A,B)

其中,A和B是向量组A和B所构成的矩阵

证明

因为 B B B可以由 A A A进行线性表示,那么由定理2可以得

R ( A ) = R ( A , B ) R(A) = R(A, B) R(A)=R(A,B)

同理, A A A也可以由 B B B进行线性表示,那么一样有

R ( B ) = R ( B , A ) R(B) = R(B, A) R(B)=R(B,A)

又因为

R ( A , B ) = R ( B , A ) R(A, B) = R(B, A) R(A,B)=R(B,A)

得到

R ( A ) = R ( B ) = R ( A , B ) = R ( B , A ) R(A) = R(B) = R(A, B) = R(B, A) R(A)=R(B)=R(A,B)=R(B,A)

证明完成!

举例

例 1

a 1 = [ 1 1 2 2 ] , a 2 = [ 1 2 1 2 ] , a 3 = [ 1 − 1 4 0 ] , b = [ 1 0 3 1 ] a_1=\begin{bmatrix} 1\\ 1\\ 2\\ 2 \end{bmatrix},a_2=\begin{bmatrix} 1\\ 2\\ 1\\ 2 \end{bmatrix},a_3=\begin{bmatrix} 1\\ -1\\ 4\\ 0 \end{bmatrix},b=\begin{bmatrix} 1\\ 0\\ 3\\ 1 \end{bmatrix} a1=1122,a2=1212,a3=1140,b=1031

证明向量 b b b能由向量组 a 1 , a 2 , a 3 a_1,a_2,a_3 a1,a2,a3线性表示,并求出表达式

证明:

A = ( a 1 , a 2 , a 3 ) , B = ( A , b ) A=(a_1,a_2,a_3),B=(A,b) A=(a1,a2,a3)B=(A,b)

由定理1可知 向量b若能由向量组 a 1 , a 2 , a 3 a_1,a_2,a_3 a1,a2,a3线性表示

R ( A ) = R ( A , b ) = R ( B ) R(A)=R(A,b)=R(B) R(A)=R(A,b)=R(B)

这里我们只需要对 B B B进行化简,求秩(求 R ( B ) R(B) R(B)的同时, R ( A ) R(A) R(A)也就一目了然了)

在这里插入图片描述

( 1 0 3 2 0 1 − 2 − 1 0 0 0 0 0 0 0 0 ) \begin{pmatrix} 1 & 0 & 3 & 2\\ 0 & 1 & -2 & -1\\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix} 1000010032002100

可得

{ x 1 + 3 x 3 = 2 x 2 − 2 x 3 = − 1 \begin{cases} x_1 + 3x_3 = 2\\ x_2 - 2x_3 =-1 \end{cases} {x1+3x3=2x22x3=1

移项,得

{ x 1 = − 3 x 3 + 2 x 2 = 2 x 3 − 1 \begin{cases} x_1 = -3x_3 + 2\\ x_2 = 2x_3 -1 \end{cases} {x1=3x3+2x2=2x31

x 3 = c x_3 = c x3=c

{ x 1 = − 3 c + 2 x 2 = 2 c − 1 x 3 = c \begin{cases} x_1 = -3c + 2\\ x_2 = 2c -1\\ x_3 = c \end{cases} x1=3c+2x2=2c1x3=c

推出

x = c ( − 3 2 1 ) + ( 2 − 1 0 ) = ( − 3 c + 2 2 c − 1 c ) x = c\begin{pmatrix} -3\\ 2\\ 1 \end{pmatrix} + \begin{pmatrix} 2\\ -1\\ 0 \end{pmatrix} = \begin{pmatrix} -3c + 2\\ 2c - 1\\ c \end{pmatrix} x=c321+210=3c+22c1c

注: x = ( x 1 x 2 x 3 ) x = \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} x=x1x2x3

所以

b = ( a 1 , a 2 , a 3 ) x = ( − 3 c + 2 ) a 1 + ( 2 c − 1 ) a 2 + c a 3 b = (a_1,a_2,a_3)x = (-3c + 2)a_1 + (2c - 1)a_2 + ca_3 b=(a1,a2,a3)x=(3c+2)a1+(2c1)a2+ca3,其中c可以取任何值

例2

a 1 = [ 1 − 1 1 − 1 ] , a 2 = [ 3 1 1 3 ] , b 1 = [ 2 0 1 1 ] , b 2 = [ 1 1 0 2 ] , b 3 = [ 3 − 1 2 0 ] a_1=\begin{bmatrix} 1\\ -1\\ 1\\ -1 \end{bmatrix},a_2=\begin{bmatrix} 3\\ 1\\ 1\\ 3 \end{bmatrix},b_1=\begin{bmatrix} 2\\ 0\\ 1\\ 1 \end{bmatrix},b_2=\begin{bmatrix} 1\\ 1\\ 0\\ 2 \end{bmatrix}, b_3=\begin{bmatrix} 3\\ -1\\ 2\\ 0 \end{bmatrix} a1=1111,a2=3113,b1=2011,b2=1102,b3=3120

证明向量组 a 1 , a 2 a_1,a_2 a1,a2与向量组 b 1 , b 2 , b 3 b_1,b_2,b_3 b1,b2,b3等价

证明:

A = ( a 1 , a 2 ) , B = ( b 1 , b 2 , b 3 ) A=(a_1,a_2),B=(b_1,b_2,b_3) A=(a1,a2),B=(b1,b2,b3)

定理2的推论 可知 A A A B B B等价

说明

R ( A ) = R ( B ) = R ( A , B ) R(A)=R(B)=R(A,B) R(A)=R(B)=R(A,B)

( A , B ) (A,B) (A,B)进行化简

在这里插入图片描述
得到

R ( A ) = R ( A , B ) = 2 R(A)=R(A,B)=2 R(A)=R(A,B)=2

又可以明显的看出来 B B B中有不等于0的2阶子式

说明

R ( B ) ≥ 2 R(B) \geq 2 R(B)2

又因为

R ( B ) ≤ R ( A , B ) = 2 R(B) \leq R(A,B)=2 R(B)R(A,B)=2

所以有

2 ≤ R ( B ) ≤ 2 2 \leq R(B) \leq 2 2R(B)2

推出

R ( B ) = 2 R(B)=2 R(B)=2

综上

R ( A ) = R ( B ) = R ( A , B ) R(A)=R(B)=R(A,B) R(A)=R(B)=R(A,B)

所以 A A A B B B等价

定理3

设向量组 B = b 1 , b 2 , . . . , b l B = b_1, b_2,..., b_l B=b1,b2,...,bl 能由向量组 A : a 1 , a 2 , . . . , a m A:a_1,a_2,...,a_m A:a1,a2,...,am线性表示,则 R ( b 1 , b 2 , . . . , b l ) ≤ R ( a 1 , a 2 , . . . , a n ) R(b_1,b_2,...,b_l) \leq R(a_1,a_2,...,a_n) R(b1,b2,...,bl)R(a1,a2,...,an)

证明:

A = ( a 1 , a 2 , . . . , a m ) A=(a_1,a_2,...,a_m) A=(a1,a2,...,am) B = ( b 1 , b 2 , . . . , b l ) B=(b_1,b_2,...,b_l) B=(b1,b2,...,bl)

因为 B B B可以由 A A A线性表示

那么就有

R ( A ) = R ( A , B ) ( 由 定 理 2 得 来 ) R(A) = R(A, B)(由定理2得来) R(A)=R(A,B)(2)

又因为
R ( B ) < = R ( A , B ) R(B) <= R(A,B) R(B)<=R(A,B)

所以

R ( B ) < = R ( A ) R(B) <= R(A) R(B)<=R(A)

小结

由上面的定律、推论可得

向量组 B : b 1 , b 2 , . . . , b l B:b_1,b_2,...,b_l B:b1,b2,...,bl能由向量组 A : a 1 , a 2 , . . . , a m A:a_1,a_2,...,a_m A:a1,a2,...,am线性表示 ⇔ \Leftrightarrow 有矩阵 K K K,使得 B = A K B=AK B=AK ⇔ \Leftrightarrow 方程 A K = B AK=B AK=B有解

结语

文章仅作为学习笔记,记录从0到1的一个过程

希望对您有所帮助,如有错误欢迎小伙伴指正~

我是 海轰ଘ(੭ˊᵕˋ)੭

如果您觉得写得可以的话,请点个赞吧

谢谢支持 ❤️

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海轰Pro

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值