make_classification函数

make_classification函数

sklearn.datasets.make_classification(n_samples=100, n_features=20, *, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None)

参数类型默认值含义
n_samplesint100样本数量
n_featuresint20特征总数。这些包括n_informative 信息特征、n_redundant冗余特征、 n_repeated重复特征和 n_features-n_informative-n_redundant-n_repeated随机抽取的无用特征。
n_informativeint2信息特征的数量。
n_redundantint2冗余特征的数量。这些特征是作为信息特征的随机线性组合生成的。(假设n_informative=F1,F2,…那么n_redundant= aF1+bF2+… a,b,c就是随机数)
n_repeatedint0信息特征冗余特征中随机抽取的重复特征的数量。
n_classesint2分类问题的类(或标签)数。
n_clusters_per_classint2每个类的集群数。
random_stateintNone类似随机种子,复现随机数
返回值输出值含义
Xndarray(n_samples, n_features)生成的n+samples个样本
yndarray(n_samples)每个样本的类别成员的整数标签。

生成一个随机的 n n n 类分类问题。

在不打乱的情况下,X按以下顺序水平堆叠特征:主要n_informative特征,然后n_redundant 是信息特征的线性组合,然后是n_repeated 重复,随机抽取信息和冗余特征的替换。其余特征充满随机噪声。因此,无需改组,所有有用的特征都包含在列中 。X[:, :n_informative + n_redundant + n_repeated]

from sklearn.datasets import make_classification

X, y = make_classification(n_samples=6, n_classes=2, n_features=5, n_informative=5,n_redundant=0,n_clusters_per_class=1)
display(X,y)

"""
n_samples=6 - 6行6个数据
n_classes=2 - 结果分为2类即二分类
n_features=5 - 5个特征
n_informative=5 - 5个全部有效的特征
n_redundant=0 - 冗余特征为0
n_clusters_per_class=1 - 每一个类别聚为一个簇

array([[ 1.10885456, -1.97464085,  2.14372944, -0.08241471, -2.60173628],
       [ 0.98456921, -4.67257395, -0.10161149,  0.52329866,  2.0178222 ],
       [-2.92441307, -2.20249011,  0.12827954,  1.90711152,  0.24340137],
       [ 0.14524134, -1.42685331,  1.92731161, -0.72915701,  1.3529692 ],
       [-0.09694719, -0.28604481, -2.62609999, -0.46131174,  0.72515074],
       [ 0.25540393, -2.64589841, -2.05721611,  0.53203936,  0.34273113]])
       
array([0, 1, 1, 0, 1, 0])
"""

参考:

sklearn.datasets.make_classification (scikit)

修改时间:
2022/1/29

内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
在无线通信领域,天线阵列设计对于信号传播方向和覆盖范围的优化至关重要。本题要求设计一个广播电台的天线布局,形成特定的水平面波瓣图,即在东北方向实现最大辐射强度,在正东到正北的90°范围内辐射衰减最小且无零点;而在其余270°范围内允许出现零点,且正西和西南方向必须为零。为此,设计了一个由4个铅垂铁塔组成的阵列,各铁塔上的电流幅度相等,相位关系可自由调整,几何布置和间距不受限制。设计过程如下: 第一步:构建初级波瓣图 选取南北方向上的两个点源,间距为0.2λ(λ为电磁波波长),形成一个端射阵。通过调整相位差,使正南方向的辐射为零,计算得到初始相位差δ=252°。为了满足西南方向零辐射的要求,整体相位再偏移45°,得到初级波瓣图的表达式为E1=cos(36°cos(φ+45°)+126°)。 第二步:构建次级波瓣图 再选取一个点源位于正北方向,另一个点源位于西南方向,间距为0.4λ。调整相位差使西南方向的辐射为零,计算得到相位差δ=280°。同样整体偏移45°,得到次级波瓣图的表达式为E2=cos(72°cos(φ+45°)+140°)。 最终组合: 将初级波瓣图E1和次级波瓣图E2相乘,得到总阵的波瓣图E=E1×E2=cos(36°cos(φ+45°)+126°)×cos(72°cos(φ+45°)+140°)。通过编程实现计算并绘制波瓣图,可以看到三个阶段的波瓣图分别对应初级波瓣、次级波瓣和总波瓣,最终得到满足广播电台需求的总波瓣图。实验代码使用MATLAB编写,利用polar函数在极坐标下绘制波瓣图,并通过subplot分块显示不同阶段的波瓣图。这种设计方法体现了天线阵列设计的基本原理,即通过调整天线间的相对位置和相位关系,控制电磁波的辐射方向和强度,以满足特定的覆盖需求。这种设计在雷达、卫星通信和移动通信基站等无线通信系统中得到了广泛应用。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值