岭回归详解 从零开始 从理论到实践

一、岭回归的理解

1.1、LinearRegression的回顾

在标准线性回归中,通过最小化真实值( y i y_i yi)和预测值( y ^ i \hat y_i y^i)的平方误差来训练模型,这个平方误差值也被称为残差平方和(RSS, Residual Sum Of Squares):
R S S = ∑ i = 1 n ( y i − y ^ i ) 2 RSS=\sum^n_{i=1}(y_i-\hat y_i)^2 RSS=i=1n(yiy^i)2
最小二乘法即最小化残差平方和,为:
J β ( β ) = arg min ⁡ β ∑ i = 1 p ( y i − x i β i − β 0 ) 2 J_{\beta}(\beta)=\argmin_\beta \sum^p_{i=1}(y_i-x_i\beta_i-\beta_0)^2 Jβ(β)=βargmini=1p(yixiβiβ0)2

将其化为矩阵形式:
J β ( β ) = arg min ⁡ β ( y − X β ) T ( y − X β ) \begin{aligned} J_{\beta}(\beta)=\argmin_\beta (y-X\beta)^T(y-X\beta) \end{aligned} Jβ(β)=βargmin(yXβ)T(yXβ)
求解为:
β = ( X T X )

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值