岭回归详解 从零开始 从理论到实践
一、岭回归的理解
1.1、LinearRegression的回顾
在标准线性回归中,通过最小化真实值( y i y_i yi)和预测值( y ^ i \hat y_i y^i)的平方误差来训练模型,这个平方误差值也被称为残差平方和(RSS, Residual Sum Of Squares):
R S S = ∑ i = 1 n ( y i − y ^ i ) 2 RSS=\sum^n_{i=1}(y_i-\hat y_i)^2 RSS=i=1∑n(yi−y^i)2
最小二乘法即最小化残差平方和,为:
J β ( β ) = arg min β ∑ i = 1 p ( y i − x i β i − β 0 ) 2 J_{\beta}(\beta)=\argmin_\beta \sum^p_{i=1}(y_i-x_i\beta_i-\beta_0)^2 Jβ(β)=βargmini=1∑p(yi−xiβi−β0)2
将其化为矩阵形式:
J β ( β ) = arg min β ( y − X β ) T ( y − X β ) \begin{aligned} J_{\beta}(\beta)=\argmin_\beta (y-X\beta)^T(y-X\beta) \end{aligned} Jβ(β)=βargmin(y−Xβ)T(y−Xβ)
求解为:
β = ( X T X )