【课后习题】高等数学第七版上第一章 函数与极限 第六节 极限存在准则 两个重要极限

文章涉及高等数学中的极限计算问题,包括三角函数、反三角函数及指数函数的极限,如limx→0sinωx/x,limx→0tan3x/x等。同时探讨了数列的极限,如(1-x)^(1/x)和(1+2x)^(1/x)等,以及利用极限存在准则证明某些表达式的结果,如limn→∞sqrt(1+1/n)=1。文章还讨论了数列的极限行为,如2,2+2,2+2+2,...的收敛性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

习题1-6

1. 计算下列极限:

(1) lim ⁡ x → 0 sin ⁡ ω x x \lim _{x \rightarrow 0} \frac{\sin \omega x}{x} limx0xsinωx;

(2) lim ⁡ x → 0 tan ⁡ 3 x x \lim _{x \rightarrow 0} \frac{\tan 3 x}{x} limx0xtan3x;

(3) lim ⁡ x → 0 sin ⁡ 2 x sin ⁡ 5 x \lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin 5 x} limx0sin5xsin2x;

在这里插入图片描述

(4) lim ⁡ x → 0 x cot ⁡ x \lim _{x \rightarrow 0} x \cot x limx0xcotx;

(5) lim ⁡ x → 0 1 − cos ⁡ 2 x x sin ⁡ x \lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x \sin x} limx0xsinx1cos2x;

(6) lim ⁡ n → ∞ 2 n sin ⁡ x 2 n \lim _{n \rightarrow \infty} 2^n \sin \frac{x}{2^n} limn2nsin2nx ( x x x 为不等于零的常数).

在这里插入图片描述

2. 计算下列极限:

(1) lim ⁡ x → 0 ( 1 − x ) 1 x \lim _{x \rightarrow 0}(1-x)^{\frac{1}{x}} limx0(1x)x1;

(2) lim ⁡ x → 0 ( 1 + 2 x ) 1 x \lim _{x \rightarrow 0}(1+2 x)^{\frac{1}{x}} limx0(1+2x)x1;

(3) lim ⁡ x → ∞ ( 1 + x x ) 2 x \lim _{x \rightarrow \infty}\left(\frac{1+x}{x}\right)^{2 x} limx(x1+x)2x;

(4) lim ⁡ x → ∞ ( 1 − 1 x ) k x \lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{k x} limx(1x1)kx ( k k k 为正整数).

在这里插入图片描述

3. 根据函数极限的定义,证明极限存在的准则I‘

在这里插入图片描述

4. 利用极限存在准则证明:

(1) lim ⁡ n → ∞ 1 + 1 n = 1 \lim _{n \rightarrow \infty} \sqrt{1+\frac{1}{n}}=1 limn1+n1 =1;

(2) lim ⁡ n → ∞ n ( 1 n 2 + π + 1 n 2 + 2 π + ⋯ + 1 n 2 + n π ) = 1 \lim _{n \rightarrow \infty} n\left(\frac{1}{n^2+\pi}+\frac{1}{n^2+2 \pi}+\cdots+\frac{1}{n^2+n \pi}\right)=1 limnn(n2+π1+n2+2π1++n2+nπ1)=1;

在这里插入图片描述

(3) 数列 2 , 2 + 2 , 2 + 2 + 2 , ⋯ \sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \cdots 2 ,2+2 ,2+2+2 , 的极限存在;

在这里插入图片描述

(4) lim ⁡ x → 0 1 + x n = 1 \lim _{x \rightarrow 0} \sqrt[n]{1+x}=1 limx0n1+x =1;

(5) lim ⁡ x → 0 + x [ 1 x ] = 1 \lim _{x \rightarrow 0^{+}} x\left[\frac{1}{x}\right]=1 limx0+x[x1]=1.

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ding Jiaxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值