习题1-6
1. 计算下列极限:
(1) lim x → 0 sin ω x x \lim _{x \rightarrow 0} \frac{\sin \omega x}{x} limx→0xsinωx;
(2) lim x → 0 tan 3 x x \lim _{x \rightarrow 0} \frac{\tan 3 x}{x} limx→0xtan3x;
(3) lim x → 0 sin 2 x sin 5 x \lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin 5 x} limx→0sin5xsin2x;
(4) lim x → 0 x cot x \lim _{x \rightarrow 0} x \cot x limx→0xcotx;
(5) lim x → 0 1 − cos 2 x x sin x \lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x \sin x} limx→0xsinx1−cos2x;
(6) lim n → ∞ 2 n sin x 2 n \lim _{n \rightarrow \infty} 2^n \sin \frac{x}{2^n} limn→∞2nsin2nx ( x x x 为不等于零的常数).
2. 计算下列极限:
(1) lim x → 0 ( 1 − x ) 1 x \lim _{x \rightarrow 0}(1-x)^{\frac{1}{x}} limx→0(1−x)x1;
(2) lim x → 0 ( 1 + 2 x ) 1 x \lim _{x \rightarrow 0}(1+2 x)^{\frac{1}{x}} limx→0(1+2x)x1;
(3) lim x → ∞ ( 1 + x x ) 2 x \lim _{x \rightarrow \infty}\left(\frac{1+x}{x}\right)^{2 x} limx→∞(x1+x)2x;
(4) lim x → ∞ ( 1 − 1 x ) k x \lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{k x} limx→∞(1−x1)kx ( k k k 为正整数).
3. 根据函数极限的定义,证明极限存在的准则I‘
4. 利用极限存在准则证明:
(1) lim n → ∞ 1 + 1 n = 1 \lim _{n \rightarrow \infty} \sqrt{1+\frac{1}{n}}=1 limn→∞1+n1=1;
(2) lim n → ∞ n ( 1 n 2 + π + 1 n 2 + 2 π + ⋯ + 1 n 2 + n π ) = 1 \lim _{n \rightarrow \infty} n\left(\frac{1}{n^2+\pi}+\frac{1}{n^2+2 \pi}+\cdots+\frac{1}{n^2+n \pi}\right)=1 limn→∞n(n2+π1+n2+2π1+⋯+n2+nπ1)=1;
(3) 数列 2 , 2 + 2 , 2 + 2 + 2 , ⋯ \sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \cdots 2,2+2,2+2+2,⋯ 的极限存在;
(4) lim x → 0 1 + x n = 1 \lim _{x \rightarrow 0} \sqrt[n]{1+x}=1 limx→0n1+x=1;
(5) lim x → 0 + x [ 1 x ] = 1 \lim _{x \rightarrow 0^{+}} x\left[\frac{1}{x}\right]=1 limx→0+x[x1]=1.