习题3-1
1. 验证罗尔定理对函数 y = ln sin x y=\ln \sin x y=lnsinx 在区间 [ π 6 , 5 π 6 ] \left[\frac{\pi}{6}, \frac{5 \pi}{6}\right] [6π,65π] 上的正确性.
2. 验证拉格朗日中值定理对函数 y = 4 x 3 − 5 x 2 + x − 2 y=4 x^3-5 x^2+x-2 y=4x3−5x2+x−2 在区间 [ 0 , 1 ] [0,1] [0,1] 上的正确性.
3. 对函数 f ( x ) = sin x f(x)=\sin x f(x)=sinx 及 F ( x ) = x + cos x F(x)=x+\cos x F(x)=x+cosx 在区间 [ 0 , π 2 ] \left[0, \frac{\pi}{2}\right] [0,2π] 上验证柯西中值定理的正确性.
4. 试证明对函数 y = p x 2 + q x + r y=p x^2+q x+r y=px2+qx+r 应用拉格朗日中值定理时所求得的点 ξ \xi ξ 总是位于区间的正中间.
5. 不用求出函数 f ( x ) = ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) f(x)=(x-1)(x-2)(x-3)(x-4) f(x)=(x−1)(x−2)(x−3)(x−4) 的导数, 说明方程 f ′ ( x ) = 0 f^{\prime}(x)=0 f′(x)=0 有几个实根, 并指出它们所在的区间.
6. 证明恒等式: arcsin x + arccos x = π 2 ( − 1 ⩽ x ⩽ 1 ) \arcsin x+\arccos x=\frac{\pi}{2}(-1 \leqslant x \leqslant 1) arcsinx+arccosx=2π(−1⩽x⩽1).
7. 若方程 a 0 x n + a 1 x n − 1 + ⋯ + a n − 1 x = 0 a_0 x^n+a_1 x^{n-1}+\cdots+a_{n-1} x=0 a0xn+a1xn−1+⋯+an−1x=0 有一个正根 x = x 0 x=x_0 x=x0, 证明方程 a 0 n x n − 1 + a_0 n x^{n-1}+ a0nxn−1+ a 1 ( n − 1 ) x n − 2 + ⋯ + a n − 1 = 0 a_1(n-1) x^{n-2}+\cdots+a_{n-1}=0 a1(n−1)xn−2+⋯+an−1=0 必有一个小于 x 0 x_0 x0 的正根.
8. 若函数 f ( x ) f(x) f(x) 在 ( a , b ) (a, b) (a,b) 内具有二阶导数, 且 f ( x 1 ) = f ( x 2 ) = f ( x 3 ) f\left(x_1\right)=f\left(x_2\right)=f\left(x_3\right) f(x1)=f(x2)=f(x3), 其中 a < x 1 < x 2 < x 3 < b a<x_1<x_2<x_3<b a<x1<x2<x3<b, 证 明: 在 ( x 1 , x 3 ) \left(x_1, x_3\right) (x1,x3) 内至少有一点 ξ \xi ξ, 使得 f ′ ′ ( ξ ) = 0 f^{\prime \prime}(\xi)=0 f′′(ξ)=0.
9. 设 a > b > 0 , n > 1 a>b>0, n>1 a>b>0,n>1, 证明:
n b n − 1 ( a − b ) < a n − b n < n a n − 1 ( a − b ) . n b^{n-1}(a-b)<a^n-b^n<n a^{n-1}(a-b) . nbn−1(a−b)<an−bn<nan−1(a−b).
10. 设 a > b > 0 a>b>0 a>b>0, 证明:
a − b a < ln a b < a − b b . \frac{a-b}{a}<\ln \frac{a}{b}<\frac{a-b}{b} . aa−b<lnba<ba−b.
11. 证明下列不等式:
(1) ∣ arctan a − arctan b ∣ ⩽ ∣ a − b ∣ |\arctan a-\arctan b| \leqslant|a-b| ∣arctana−arctanb∣⩽∣a−b∣;
(2) 当 x > 1 x>1 x>1 时, e x > e x \mathrm{e}^x>\mathrm{e} x ex>ex.
12. 证明方程 x 5 + x − 1 = 0 x^5+x-1=0 x5+x−1=0 只有一个正根.
13. 设 f ( x ) 、 g ( x ) f(x) 、 g(x) f(x)、g(x) 在 [ a , b ] [a, b] [a,b] 上连续, 在 ( a , b ) (a, b) (a,b) 内可导, 证明在 ( a , b ) (a, b) (a,b) 内有一点 ξ \xi ξ, 使
∣ f ( a ) f ( b ) g ( a ) g ( b ) ∣ = ( b − a ) ∣ f ( a ) f ′ ( ξ ) g ( a ) g ′ ( ξ ) ∣ . \left|\begin{array}{ll} f(a) & f(b) \\ g(a) & g(b) \end{array}\right|=(b-a)\left|\begin{array}{ll} f(a) & f^{\prime}(\xi) \\ g(a) & g^{\prime}(\xi) \end{array}\right| \text {. } ∣∣∣∣f(a)g(a)f(b)g(b)∣∣∣∣=(b−a)∣∣∣∣f(a)g(a)f′(ξ)g′(ξ)∣∣∣∣.
14. 证明: 若函数 f ( x ) f(x) f(x) 在 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞) 内满足关系式 f ′ ( x ) = f ( x ) f^{\prime}(x)=f(x) f′(x)=f(x), 且 f ( 0 ) = 1 f(0)=1 f(0)=1, 则 f ( x ) = e x f(x)=\mathrm{e}^x f(x)=ex.
15. 设函数 y = f ( x ) y=f(x) y=f(x) 在 x = 0 x=0 x=0 的某邻域内具有 n n n 阶导数, 且 f ( 0 ) = f ′ ( 0 ) = ⋯ = f(0)=f^{\prime}(0)=\cdots= f(0)=f′(0)=⋯= f ( n − 1 ) ( 0 ) = 0 f^{(n-1)}(0)=0 f(n−1)(0)=0, 试用柯西中值定理证明:
f ( x ) x n = f ( n ) ( θ x ) n ! ( 0 < θ < 1 ) . \frac{f(x)}{x^n}=\frac{f^{(n)}(\theta x)}{n !} \quad(0<\theta<1) . xnf(x)=n!f(n)(θx)(0<θ<1).