【课后习题】高等数学第七版下第十一章 曲线积分与曲面积分 第六节 高斯公式 通量与散度

该文详细阐述了高斯公式在计算曲面积分中的应用,包括平面、球面和半球体等不同几何形状的表面,并涉及向量场的通量和散度计算。此外,文章还讨论了格林第二公式和阿基米德原理的数学证明,展示了数学在物理问题中的重要应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

习题11-6

1. 利用高斯公式计算曲面积分:

(1) ∯ Σ x 2   d y   d z + y 2   d z   d x + z 2   d x   d y \oiint_{\Sigma} x^2 \mathrm{~d} y \mathrm{~d} z+y^2 \mathrm{~d} z \mathrm{~d} x+z^2 \mathrm{~d} x \mathrm{~d} y Σx2 dy dz+y2 dz dx+z2 dx dy, 其中 Σ \Sigma Σ 为平面 x = 0 , y = 0 , z = 0 , x = a , y = a , z = a x=0, y=0, z=0, x=a, y=a, z=a x=0,y=0,z=0,x=a,y=a,z=a 所围成的立体的表面的外侧;

(2) ∯ Σ x 3   d y   d z + y 3   d z   d x + z 3   d x   d y \oiint_{\Sigma} x^3 \mathrm{~d} y \mathrm{~d} z+y^3 \mathrm{~d} z \mathrm{~d} x+z^3 \mathrm{~d} x \mathrm{~d} y Σx3 dy dz+y3 dz dx+z3 dx dy, 其中 Σ \Sigma Σ 为球面 x 2 + y 2 + z 2 = a 2 x^2+y^2+z^2=a^2 x2+y2+z2=a2 的外侧;

在这里插入图片描述

(3) ∯ Σ x z 2   d y   d z + ( x 2 y − z 3 ) d z   d x + ( 2 x y + y 2 z ) d x   d y \oiint_{\Sigma} x z^2 \mathrm{~d} y \mathrm{~d} z+\left(x^2 y-z^3\right) \mathrm{d} z \mathrm{~d} x+\left(2 x y+y^2 z\right) \mathrm{d} x \mathrm{~d} y Σxz2 dy dz+(x2yz3)dz dx+(2xy+y2z)dx dy, 其中 Σ \Sigma Σ 为上半球体 0 ⩽ z ⩽ 0 \leqslant z \leqslant 0z a 2 − x 2 − y 2 , x 2 + y 2 ⩽ a 2 \sqrt{a^2-x^2-y^2}, x^2+y^2 \leqslant a^2 a2x2y2 ,x2+y2a2 的表面的外侧;

(4) ∯ Σ x   d y   d z + y   d z   d x + z   d x   d y \oiint_{\Sigma} x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y Σx dy dz+y dz dx+z dx dy, 其中 Σ \Sigma Σ 是界于 z = 0 z=0 z=0 z = 3 z=3 z=3 之间的圆柱体 x 2 + y 2 ⩽ 9 x^2+y^2 \leqslant 9 x2+y29 的整个 表面的外侧 ;

在这里插入图片描述

(5) ∯ Σ 4 x z   d y   d z − y 2   d z   d x + y z   d x   d y \oiint_{\Sigma} 4 x z \mathrm{~d} y \mathrm{~d} z-y^2 \mathrm{~d} z \mathrm{~d} x+y z \mathrm{~d} x \mathrm{~d} y Σ4xz dy dzy2 dz dx+yz dx dy, 其中 Σ \Sigma Σ 是平面 x = 0 , y = 0 , z = 0 , x = 1 , y = 1 , z = 1 x=0, y=0, z=0, x=1, y=1, z=1 x=0,y=0,z=0,x=1,y=1,z=1 所围成的立方体的全表面的外侧.

在这里插入图片描述

2. 求下列向量 A \boldsymbol{A} A 穿过曲面 Σ \Sigma Σ 流向指定侧的通量:

(1) A = y z i + x z j + x y k , Σ \boldsymbol{A}=y z \boldsymbol{i}+x z \boldsymbol{j}+x y \boldsymbol{k}, \Sigma A=yzi+xzj+xyk,Σ 为圆柱 x 2 + y 2 ⩽ a 2 ( 0 ⩽ z ⩽ h ) x^2+y^2 \leqslant a^2(0 \leqslant z \leqslant h) x2+y2a2(0zh) 的全表面,流向外侧;

(2) A = ( 2 x − z ) i + x 2 y j − x z 2 k , Σ \boldsymbol{A}=(2 x-z) \boldsymbol{i}+x^2 y \boldsymbol{j}-x z^2 \boldsymbol{k}, \boldsymbol{\Sigma} A=(2xz)i+x2yjxz2k,Σ 为立方体 0 ⩽ x ⩽ a , 0 ⩽ y ⩽ a , 0 ⩽ z ⩽ a 0 \leqslant x \leqslant a, 0 \leqslant y \leqslant a, 0 \leqslant z \leqslant a 0xa,0ya,0za 的全表面, 流向外侧;

(3) A = ( 2 x + 3 z ) i − ( x z + y ) j + ( y 2 + 2 z ) k , Σ \boldsymbol{A}=(2 x+3 z) \boldsymbol{i}-(x z+y) j+\left(y^2+2 z\right) \boldsymbol{k}, \Sigma A=(2x+3z)i(xz+y)j+(y2+2z)k,Σ 是以点 ( 3 , − 1 , 2 ) (3,-1,2) (3,1,2) 为球心, 半径 R = 3 R=3 R=3 的球面, 流向外侧.

在这里插入图片描述

3. 求下列向量场 A \boldsymbol{A} A 的散度:

(1) A = ( x 2 + y z ) i + ( y 2 + x z ) j + ( z 2 + x y ) k \boldsymbol{A}=\left(x^2+y z\right) \boldsymbol{i}+\left(y^2+x z\right) \boldsymbol{j}+\left(z^2+x y\right) \boldsymbol{k} A=(x2+yz)i+(y2+xz)j+(z2+xy)k;

(2) A = e x y i + cos ⁡ ( x y ) j + cos ⁡ ( x z 2 ) k \boldsymbol{A}=\mathrm{e}^{x y} \boldsymbol{i}+\cos (x y) \boldsymbol{j}+\cos \left(x z^2\right) \boldsymbol{k} A=exyi+cos(xy)j+cos(xz2)k;

(3) A = y 2 i + x y j + x z k \boldsymbol{A}=y^2 \boldsymbol{i}+x y \boldsymbol{j}+x z \boldsymbol{k} A=y2i+xyj+xzk.

在这里插入图片描述

4. 设 u ( x , y , z ) 、 v ( x , y , z ) u(x, y, z) 、 v(x, y, z) u(x,y,z)v(x,y,z) 是两个定义在闭区域 Ω \Omega Ω 上的具有二阶连续偏导数的函数, ∂ u ∂ n \frac{\partial u}{\partial n} nu ∂ v ∂ n \frac{\partial v}{\partial n} nv 依次表示 u ( x , y , z ) 、 v ( x , y , z ) u(x, y, z) 、 v(x, y, z) u(x,y,z)v(x,y,z) 沿 Σ \Sigma Σ 的外法线方向的方向导数. 证明 :

∭ Ω ( u Δ v − v Δ u ) d x   d y   d z = ∯ Σ ( u ∂ v ∂ n − v ∂ u ∂ n ) d S , \iiint_{\Omega}(u \Delta v-v \Delta u) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\oiint_{\Sigma}\left(u \frac{\partial v}{\partial n}-v \frac{\partial u}{\partial n}\right) \mathrm{d} S, Ω(uΔvvΔu)dx dy dz= Σ(unvvnu)dS,
其中 Σ \Sigma Σ 是空间闭区域 Ω \Omega Ω 的整个边界曲面. 这个公式叫做格林第二公式.

在这里插入图片描述

例3 证明的格林第一公式:

在这里插入图片描述

5. 利用高斯公式推证阿基米德原理 : 浸没在液体中的物体所受液体的压力的合力 (即浮 力) 的方向铅直向上, 其大小等于这物体所排开的液体的重力.

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ding Jiaxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值