习题11-6
1. 利用高斯公式计算曲面积分:
(1) ∯ Σ x 2 d y d z + y 2 d z d x + z 2 d x d y \oiint_{\Sigma} x^2 \mathrm{~d} y \mathrm{~d} z+y^2 \mathrm{~d} z \mathrm{~d} x+z^2 \mathrm{~d} x \mathrm{~d} y ∬Σx2 dy dz+y2 dz dx+z2 dx dy, 其中 Σ \Sigma Σ 为平面 x = 0 , y = 0 , z = 0 , x = a , y = a , z = a x=0, y=0, z=0, x=a, y=a, z=a x=0,y=0,z=0,x=a,y=a,z=a 所围成的立体的表面的外侧;
(2) ∯ Σ x 3 d y d z + y 3 d z d x + z 3 d x d y \oiint_{\Sigma} x^3 \mathrm{~d} y \mathrm{~d} z+y^3 \mathrm{~d} z \mathrm{~d} x+z^3 \mathrm{~d} x \mathrm{~d} y ∬Σx3 dy dz+y3 dz dx+z3 dx dy, 其中 Σ \Sigma Σ 为球面 x 2 + y 2 + z 2 = a 2 x^2+y^2+z^2=a^2 x2+y2+z2=a2 的外侧;
(3) ∯ Σ x z 2 d y d z + ( x 2 y − z 3 ) d z d x + ( 2 x y + y 2 z ) d x d y \oiint_{\Sigma} x z^2 \mathrm{~d} y \mathrm{~d} z+\left(x^2 y-z^3\right) \mathrm{d} z \mathrm{~d} x+\left(2 x y+y^2 z\right) \mathrm{d} x \mathrm{~d} y ∬Σxz2 dy dz+(x2y−z3)dz dx+(2xy+y2z)dx dy, 其中 Σ \Sigma Σ 为上半球体 0 ⩽ z ⩽ 0 \leqslant z \leqslant 0⩽z⩽ a 2 − x 2 − y 2 , x 2 + y 2 ⩽ a 2 \sqrt{a^2-x^2-y^2}, x^2+y^2 \leqslant a^2 a2−x2−y2,x2+y2⩽a2 的表面的外侧;
(4) ∯ Σ x d y d z + y d z d x + z d x d y \oiint_{\Sigma} x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y ∬Σx dy dz+y dz dx+z dx dy, 其中 Σ \Sigma Σ 是界于 z = 0 z=0 z=0 和 z = 3 z=3 z=3 之间的圆柱体 x 2 + y 2 ⩽ 9 x^2+y^2 \leqslant 9 x2+y2⩽9 的整个 表面的外侧 ;
(5) ∯ Σ 4 x z d y d z − y 2 d z d x + y z d x d y \oiint_{\Sigma} 4 x z \mathrm{~d} y \mathrm{~d} z-y^2 \mathrm{~d} z \mathrm{~d} x+y z \mathrm{~d} x \mathrm{~d} y ∬Σ4xz dy dz−y2 dz dx+yz dx dy, 其中 Σ \Sigma Σ 是平面 x = 0 , y = 0 , z = 0 , x = 1 , y = 1 , z = 1 x=0, y=0, z=0, x=1, y=1, z=1 x=0,y=0,z=0,x=1,y=1,z=1 所围成的立方体的全表面的外侧.
2. 求下列向量 A \boldsymbol{A} A 穿过曲面 Σ \Sigma Σ 流向指定侧的通量:
(1) A = y z i + x z j + x y k , Σ \boldsymbol{A}=y z \boldsymbol{i}+x z \boldsymbol{j}+x y \boldsymbol{k}, \Sigma A=yzi+xzj+xyk,Σ 为圆柱 x 2 + y 2 ⩽ a 2 ( 0 ⩽ z ⩽ h ) x^2+y^2 \leqslant a^2(0 \leqslant z \leqslant h) x2+y2⩽a2(0⩽z⩽h) 的全表面,流向外侧;
(2) A = ( 2 x − z ) i + x 2 y j − x z 2 k , Σ \boldsymbol{A}=(2 x-z) \boldsymbol{i}+x^2 y \boldsymbol{j}-x z^2 \boldsymbol{k}, \boldsymbol{\Sigma} A=(2x−z)i+x2yj−xz2k,Σ 为立方体 0 ⩽ x ⩽ a , 0 ⩽ y ⩽ a , 0 ⩽ z ⩽ a 0 \leqslant x \leqslant a, 0 \leqslant y \leqslant a, 0 \leqslant z \leqslant a 0⩽x⩽a,0⩽y⩽a,0⩽z⩽a 的全表面, 流向外侧;
(3) A = ( 2 x + 3 z ) i − ( x z + y ) j + ( y 2 + 2 z ) k , Σ \boldsymbol{A}=(2 x+3 z) \boldsymbol{i}-(x z+y) j+\left(y^2+2 z\right) \boldsymbol{k}, \Sigma A=(2x+3z)i−(xz+y)j+(y2+2z)k,Σ 是以点 ( 3 , − 1 , 2 ) (3,-1,2) (3,−1,2) 为球心, 半径 R = 3 R=3 R=3 的球面, 流向外侧.
3. 求下列向量场 A \boldsymbol{A} A 的散度:
(1) A = ( x 2 + y z ) i + ( y 2 + x z ) j + ( z 2 + x y ) k \boldsymbol{A}=\left(x^2+y z\right) \boldsymbol{i}+\left(y^2+x z\right) \boldsymbol{j}+\left(z^2+x y\right) \boldsymbol{k} A=(x2+yz)i+(y2+xz)j+(z2+xy)k;
(2) A = e x y i + cos ( x y ) j + cos ( x z 2 ) k \boldsymbol{A}=\mathrm{e}^{x y} \boldsymbol{i}+\cos (x y) \boldsymbol{j}+\cos \left(x z^2\right) \boldsymbol{k} A=exyi+cos(xy)j+cos(xz2)k;
(3) A = y 2 i + x y j + x z k \boldsymbol{A}=y^2 \boldsymbol{i}+x y \boldsymbol{j}+x z \boldsymbol{k} A=y2i+xyj+xzk.
4. 设 u ( x , y , z ) 、 v ( x , y , z ) u(x, y, z) 、 v(x, y, z) u(x,y,z)、v(x,y,z) 是两个定义在闭区域 Ω \Omega Ω 上的具有二阶连续偏导数的函数, ∂ u ∂ n \frac{\partial u}{\partial n} ∂n∂u 、 ∂ v ∂ n \frac{\partial v}{\partial n} ∂n∂v 依次表示 u ( x , y , z ) 、 v ( x , y , z ) u(x, y, z) 、 v(x, y, z) u(x,y,z)、v(x,y,z) 沿 Σ \Sigma Σ 的外法线方向的方向导数. 证明 :
∭
Ω
(
u
Δ
v
−
v
Δ
u
)
d
x
d
y
d
z
=
∯
Σ
(
u
∂
v
∂
n
−
v
∂
u
∂
n
)
d
S
,
\iiint_{\Omega}(u \Delta v-v \Delta u) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\oiint_{\Sigma}\left(u \frac{\partial v}{\partial n}-v \frac{\partial u}{\partial n}\right) \mathrm{d} S,
∭Ω(uΔv−vΔu)dx dy dz=∬Σ(u∂n∂v−v∂n∂u)dS,
其中
Σ
\Sigma
Σ 是空间闭区域
Ω
\Omega
Ω 的整个边界曲面. 这个公式叫做格林第二公式.
例3 证明的格林第一公式: