习题11-7
1. 试对曲面 Σ : z = x 2 + y 2 , x 2 + y 2 ⩽ 1 , P = y 2 , Q = x , R = z 2 \Sigma_{:} z=x^2+y^2, x^2+y^2 \leqslant 1, P=y^2, Q=x, R=z^2 Σ:z=x2+y2,x2+y2⩽1,P=y2,Q=x,R=z2 验证斯托克斯公式.
2. 利用斯托克斯公式,计算下列曲线积分:
(1) ∮ Γ y d x + z d y + x d z \oint_{\Gamma} y \mathrm{~d} x+z \mathrm{~d} y+x \mathrm{~d} z ∮Γy dx+z dy+x dz, 其中 Γ \Gamma Γ 为圆周 x 2 + y 2 + z 2 = a 2 , x + y + z = 0 x^2+y^2+z^2=a^2, x+y+z=0 x2+y2+z2=a2,x+y+z=0, 若从 x x x 轴的正向看去, 这圆周是取逆时针方向;
(2) ∮ Γ ( y − z ) d x + ( z − x ) d y + ( x − y ) d z \oint_{\Gamma}(y-z) \mathrm{d} x+(z-x) \mathrm{d} y+(x-y) \mathrm{d} z ∮Γ(y−z)dx+(z−x)dy+(x−y)dz, 其中 Γ \Gamma Γ 为椭圆 x 2 + y 2 = a 2 , x a + z b = 1 ( a > 0 x^2+y^2=a^2, \frac{x}{a}+\frac{z}{b}=1(a>0 x2+y2=a2,ax+bz=1(a>0, b > 0 b>0 b>0 ), 若从 x x x 轴正向看去, 这椭圆是取逆时针方向;
(3) ∮ Γ 3 y d x − x z d y + y z 2 d z \oint_{\Gamma} 3 y \mathrm{~d} x-x z \mathrm{~d} y+y z^2 \mathrm{~d} z ∮Γ3y dx−xz dy+yz2 dz, 其中 Γ \Gamma Γ 是圆周 x 2 + y 2 = 2 z , z = 2 x^2+y^2=2 z, z=2 x2+y2=2z,z=2, 若从 z z z 轴正向看去, 这圆周是取逆时针方向;
(4) ∮ Γ 2 y d x + 3 x d y − z 2 d z \oint_{\Gamma} 2 y \mathrm{~d} x+3 x \mathrm{~d} y-z^2 \mathrm{~d} z ∮Γ2y dx+3x dy−z2 dz, 其中 Γ \Gamma Γ 是圆周 x 2 + y 2 + z 2 = 9 , z = 0 x^2+y^2+z^2=9, z=0 x2+y2+z2=9,z=0, 若从 z z z 轴正向看去, 这圆周是取逆时针方向.
3. 求下列向量场 A \boldsymbol{A} A 的旋度:
(1) A = ( 2 z − 3 y ) i + ( 3 x − z ) j + ( y − 2 x ) k \boldsymbol{A}=(2 z-3 y) \boldsymbol{i}+(3 x-z) \boldsymbol{j}+(y-2 x) \boldsymbol{k} A=(2z−3y)i+(3x−z)j+(y−2x)k;
(2) A = ( z + sin y ) i − ( z − x cos y ) j \boldsymbol{A}=(z+\sin y) \boldsymbol{i}-(z-x \cos y) \boldsymbol{j} A=(z+siny)i−(z−xcosy)j;
(3) A = x 2 sin y i + y 2 sin ( x z ) j + x y sin ( cos z ) k \boldsymbol{A}=x^2 \sin y \boldsymbol{i}+y^2 \sin (x z) \boldsymbol{j}+x y \sin (\cos z) \boldsymbol{k} A=x2sinyi+y2sin(xz)j+xysin(cosz)k.
4. 利用斯托克斯公式把曲面积分 ∬ Σ rot A ⋅ n d S \iint_{\Sigma} \operatorname{rot} \boldsymbol{A} \cdot \boldsymbol{n} \mathrm{d} S ∬ΣrotA⋅ndS 化为曲线积分, 并计算积分值, 其中 A 、 Σ \boldsymbol{A} 、 \Sigma A、Σ 及 n \boldsymbol{n} n 分别如下:
(1) A = y 2 i + x y j + x z k , Σ \boldsymbol{A}=y^2 i+x y j+x z k, \Sigma A=y2i+xyj+xzk,Σ 为上半球面 z = 1 − x 2 − y 2 z=\sqrt{1-x^2-y^2} z=1−x2−y2 的上侧, n n n 是 Σ \Sigma Σ 的单位法向量;
(2) A = ( y − z ) i + y z j − x z k , Σ \boldsymbol{A}=(y-z) \boldsymbol{i}+y z \boldsymbol{j}-x z \boldsymbol{k}, \Sigma A=(y−z)i+yzj−xzk,Σ 为立方体 { ( x , y , z ) ∣ 0 ⩽ x ⩽ 2 , 0 ⩽ y ⩽ 2 , 0 ⩽ z ⩽ 2 } \{(x, y, z) \mid 0 \leqslant x \leqslant 2,0 \leqslant y \leqslant 2,0 \leqslant z \leqslant 2\} {(x,y,z)∣0⩽x⩽2,0⩽y⩽2,0⩽z⩽2} 的表面外侧去掉 x O y x O y xOy 面上的那个底面, n \boldsymbol{n} n 是 Σ \Sigma Σ 的单位法向量.
5. 求下列向量场 A \boldsymbol{A} A 沿闭曲线 Γ \Gamma Γ (从 z z z 轴正向看 Γ \Gamma Γ 依逆时针方向) 的环流量:
(1) A = − y i + x j + c k \boldsymbol{A}=-y \boldsymbol{i}+x j+c \boldsymbol{k} A=−yi+xj+ck ( c c c 为常量), Γ \Gamma Γ 为圆周 x 2 + y 2 = 1 , z = 0 x^2+y^2=1, z=0 x2+y2=1,z=0;
(2) A = ( x − z ) i + ( x 3 + y z ) j − 3 x y 2 k \boldsymbol{A}=(x-z) i+\left(x^3+y z\right) \boldsymbol{j}-3 x y^2 \boldsymbol{k} A=(x−z)i+(x3+yz)j−3xy2k, 其中 Γ \Gamma Γ 为圆周 z = 2 − x 2 + y 2 , z = 0 z=2-\sqrt{x^2+y^2}, z=0 z=2−x2+y2,z=0.