课程学习笔记,课程链接
import torch
from torch import nn
from torch.nn import L1Loss, MSELoss
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)
inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))
loss = L1Loss(reduction='sum')
result = loss(inputs, targets)
loss_mse = MSELoss()
result_mse = loss_mse(inputs, targets)
print(result)
print(result_mse)
# 交叉熵
x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, (1, 3))
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x, y)
print(result_cross)
现在以 CIFAR10 数据集为例,在上一篇文章中最后搭建的神经网络中使用 CrossEntropyLoss 函数作为损失函数,讲解在神经网络中如何使用损失函数。
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("D:\Code\Project\learn_pytorch\pytorch_p17-21\data", train=False,
download=True, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=4)
class Jiaolong(nn.Module):
def __init__(self):
super(Jiaolong, self).__init__()
self.model1 = Sequential(
Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2),
MaxPool2d(kernel_size=2),
Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2),
MaxPool2d(kernel_size=2),
Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2),
MaxPool2d(kernel_size=2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
loss = nn.CrossEntropyLoss()
jiaolong = Jiaolong()
for data in dataloader:
imgs, targets = data
outputs = jiaolong(imgs)
result_loss = loss(outputs, targets)
print(result_loss)