损失函数中为什么要用Log?

在机器学习中,损失函数常使用log转化连乘为求和,便于求导和避免数值溢出。极大似然估计通过取对数优化计算,同时log函数保持了优化方向。softmax用于将模型输出转换为概率分布,确保概率和为1,与交叉熵结合提高数值稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:机器学习中损失函数常用log的用意_损失函数为什么用log_小妖精Fsky的博客-CSDN博客

Loss 在使用似然函数最大化时,其形式是进行连乘,但是为了便于处理,一般会套上log,这样便可以将连乘转化为求和,由于log函数是单调递增函数,因此不会改变优化结果。

极大似然估计中取对数的原因:取对数后,连乘可以转化为相加,方便求导,这是因为对数函数的求导更加简单,对数函数的导数比原函数更容易计算和优化除此之外对数函数 ln为单调递增函数,不会改变似然函数极值点。

以下是个人拙见:

首先在分类中为什么会用到似然函数的概念?

我们在对一个图片进行分类(假设是每个图片只有一个类别)时,例如:我们通过模型得到了每个样本对应真实类别的概率值,即P_i(i=0,1,2...,n;n是样本个数),假设有k个类别,但我们只取每个样本对应其真实类别的那个概率。

我们使用极大似然估计反推最具有可能(最大概率)导致这些样本结果出现的模型参数值。即

\prod P_i

最大化这个概率。即max \prod P_i,我们希望找到极大值点,使得概率最大化,这就需要求偏导。

但往往连乘不容易求导。

我们分析似然函数,其值在0到1之间,而且越接近于1说明分类的效果越好,越接近于0说明分类的效果越差。与此同时-log函数在0到1区间单调递减,且大于等于0,假设我们取对数似然后,那么对数值越大说明越接近于0,对数值越小越接近于1,即-log(\prod P_i)(注意这里P_i是不同样本对应其真实类别的概率)。我们希望能够找到使得对数值最小的一组参数,即min -log(\prod P_i) = min \sum -log(P_i)

 这样求导比较容易一些。

取对数似然除了求导方便之外,还有其他的好处吗?我们知道float32的数值范围是:

 连乘容易导致数值溢出,假设我们有100个样本,每个样本分类的真实概率值为0.1,那么\prod P_i=10^{(-100)},而负对数似然就不会有这个问题,当存在单个样本真实概率溢出的情况下,会出现数值溢出的问题,也是半精度计算中经常出现的loss nan的问题。

取对数似然和softmax是因为可以消掉e^x吗?

个人认为答案是否定的。

首先我们思考为什么要用softmax,假设我们不用softmax,模型最后的输出有可能是[-0.1, -0.1, 0.1](三分类),也有可能是[10, 9.9,9.9],我们使用极大似然估计来分析,第二个输出的值大,它的置信度应该很高,但事实并非如此。我们使用softmax的根本原因是将其转化为0到1之间的概率,且所有的值加起来等于 1。

softmax 和 cross-entropy 本来没有太大的关系,只是把两个放在一起实现的话,算起来更快,也更数值稳定。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值