n条直线最多将平面分为多少部分

本文探讨了n条直线最多能将平面划分为多少部分的问题,并给出了公式f[n]=(n^2+n+2)/2,适用于任意数量的直线。通过具体实例说明了从1条直线开始,随着直线数量增加,平面被划分的部分数目的增长规律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

n条直线最多将平面分为多少部分

一条直线:2块
两条直线:4块
三条直线:7块
四条直线:11块

当n==1时: f[1]=2
当n>1时: f[N]=f[N-1]+N

总而言之: f [ n ] = ( n 2 + n + 2 ) / 2 {f[n]=(n^2+n+2)/2} f[n]=(n2+n+2)/2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值