风力发电机的叶素-动量理论中,分为叶素理论与动量理论两部分。这两种方法都可以计算风机的推力和扭矩,两种方法计算的扭矩(或推力)是相等的,那么通过迭代,就能得到诱导系数,从而获得推力和扭矩,等式为
其中
注意,f 为叶尖损失因子,a 为轴向诱导系数,a‘ 为切向诱导系数。
通常,风机的初步设计不考虑叶尖损失,f 设为1。另外需要注意,动量理论是针对圆环上平均的作用力建立的方程,而叶素理论是根据有限叶片局部的受力建立的方程,因此,叶素上的诱导系数需要使用叶尖损失f 来修正,下标b 表示的就是这一概念,见下图。

一、动量理论
把旋转的风机想象成一个圆盘,转速越大,通过圆盘的气流越少。
结合伯努利方程,考虑两种极端情况:风机转速无穷大和风机转速趋近于0。
当风机转速无穷大时,没有风穿过圆盘,此时,即叶轮面没有风速,风的功率是:
风机转速趋近于 0 时,风全部穿过叶轮,此时,即叶轮面没有压差,风的功率是:

那么,何时风做功的功率能达到最大?给出结论公式,风对叶轮做功功率是:
功率系数是:
可见,当诱导系数 a=1/3 时,Cp 最大,是 16/27,即贝茨极限。诱导系数,就是圆盘(叶轮)对流场的影响程度,a 等于 1 和 0 ,分别对应上述两种极端情况。
根据动量理论,距离叶轮中心r处的圆环上的推力和扭矩分别是
二、叶素理论

距离叶轮中心r处的圆环上的推力和扭矩分别是
由于动量理论和叶素理论在一个圆环上计算的推力和扭矩是相等的,可以得到诱导系数。
参考文献
[1] Burton T , Sharpe D , Bossanyi E , et al. Wind energy handbook[J]. 2011.
如有咨询/合作/招聘,欢迎邮件交流,Email: 17265356623@163.com