基础 | 结构动力学与模态

单自由度系统是动力学基础。两自由度系统从单自由度推广得到,可以代表多自由度系统特征。

单自由度动力学方程:

\\m\ddot{x}+c\dot{x}+kx=F\\

简支梁的阵型可以明显的看出阵型的正交性,因此,以无阻尼简支梁为例介绍多自由度系统。

连续简支梁自由振动的动力学方程:

\\ m \frac{\partial^{2} v}{\partial t^{2}}+E I \frac{\partial v^{4}}{\partial x^{4}}=0\\

转换到模态空间中:

\\m \sum_{n=1}^{\infty}\phi_n(x) \frac{\partial^{2} Y_n(t)}{\partial t^{2}}+E I \sum_{n=1}^{\infty}Y_n(t) \frac{\partial^{4} \phi_n(x)}{\partial x^{4}}=0\\

\phi(x)是振型,连续简支梁模态为无穷阶,下图仅展示前三阶;振型,就是在模态空间中描述振动的形态的“基”,振动的形态就是“基”的叠加。可以类比物理坐标系中描述单点位置的坐标,需要有x、y、z三个坐标来确定空间位置,且,x、y、z三个方向相互正交。

Y(t) 是广义坐标,表示各个振型参与振动的多少,比如,一阶振型振幅为0.5,二阶振型振幅为0.1,那么物理空间中的坐标就由模态空间中的模态叠加而成,即

\\y(t)=\phi_1(x)Y_{1}(t)+\phi_{2}(x)Y_2(t)=\phi_1(x)0.5 sin(\omega_{1} t+\theta_{1})+\phi_{2}(x)0.1 sin(\omega_{2} t+\theta_2)\\

m 是质量,x 是梁上的位置,t 是时间,n 是振型阶数,EI 是刚度。

能否只激发单一模态的振动?当然是可以的,其中一种方法,就是将梁上各点自由振动的初始位移推到与振型相同的位置,之后同时释放,即给定初始位移与振型相同

\\ \int_{0}^{L} \phi_{m}(x) \phi_{n}(x) d x=0 ; \quad m \neq n\\

如要激发第1阶模态,但是混入了第2阶模态,可用阵型来检验。假定初始位移为

\\y(0)=\sum_{n=1}^{\infty}\phi_n Y_{n,0}=\phi_1 Y_{1,0}+\phi_2 Y_{2,0}\\

给物理空间的位移表达式y(t) 左乘\phi_1,并沿梁上从0到L积分,可得

\\\int_{0}^{L}\phi_1(x)y(t)dx=\\\sum_{n=1}^{\infty} \int_{0}^{L} \phi_{1}(x) \phi_n(x) d x Y_{n,0}sin(\omega_n(t)+\theta_n)=\\ \int_{0}^{L} \phi_{1}(x) \phi_1(x) d x Y_{1,0}sin(\omega_1(t)+\theta_1)\\

给物理空间的位移表达式y(t) 左乘\phi_2,并沿梁上从0到L积分,可得

\\\int_{0}^{L}\phi_2(x)y(t)dx=\\\sum_{n=1}^{\infty} \int_{0}^{L} \phi_{2}(x) \phi_{n}(x) d x Y_{n,0}sin(\omega_n(t)+\theta_n)=\\\int_{0}^{L} \phi_{2}(x) \phi_{2}(x) d x Y_{2,0}sin(\omega_2(t)+\theta_2)\\

显然有第2阶模态,不是纯粹的第1阶模态。

对于简支梁的冲击试验,显然单点的冲击会激起多阶模态,因为冲击引起的位移或速度不会与某一振型相同。

如有咨询/合作/招聘,欢迎邮件交流,Email: 17265356623@163.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值