单自由度系统是动力学基础。两自由度系统从单自由度推广得到,可以代表多自由度系统特征。
单自由度动力学方程:
简支梁的阵型可以明显的看出阵型的正交性,因此,以无阻尼简支梁为例介绍多自由度系统。
连续简支梁自由振动的动力学方程:
转换到模态空间中:
是振型,连续简支梁模态为无穷阶,下图仅展示前三阶;振型,就是在模态空间中描述振动的形态的“基”,振动的形态就是“基”的叠加。可以类比物理坐标系中描述单点位置的坐标,需要有x、y、z三个坐标来确定空间位置,且,x、y、z三个方向相互正交。
是广义坐标,表示各个振型参与振动的多少,比如,一阶振型振幅为0.5,二阶振型振幅为0.1,那么物理空间中的坐标就由模态空间中的模态叠加而成,即
m 是质量,x 是梁上的位置,t 是时间,n 是振型阶数,EI 是刚度。
能否只激发单一模态的振动?当然是可以的,其中一种方法,就是将梁上各点自由振动的初始位移推到与振型相同的位置,之后同时释放,即给定初始位移与振型相同。
如要激发第1阶模态,但是混入了第2阶模态,可用阵型来检验。假定初始位移为
给物理空间的位移表达式y(t) 左乘,并沿梁上从0到L积分,可得
给物理空间的位移表达式y(t) 左乘,并沿梁上从0到L积分,可得
显然有第2阶模态,不是纯粹的第1阶模态。
对于简支梁的冲击试验,显然单点的冲击会激起多阶模态,因为冲击引起的位移或速度不会与某一振型相同。
如有咨询/合作/招聘,欢迎邮件交流,Email: 17265356623@163.com