安装一些大模型微调相关的库

安装微调所需要的库

!pip install -U huggingface_hub modelscope “transformers>=4.37.0” streamlit1.24.0 sentencepiece0.1.99 accelerate0.27.2 transformers_stream_generator0.0.4 datasets2.18.0 peft0.10.0

这个命令主要用于安装深度学习和自然语言处理(NLP)相关的库,特别适用于微调(fine-tuning)和部署机器学习模型。下面是详细解释:

命令解释

!pip install -U huggingface_hub modelscope "transformers>=4.37.0" streamlit==1.24.0 sentencepiece==0.1.99 accelerate==0.27.2 transformers_stream_generator==0.0.4 datasets==2.18.0 peft==0.10.0
  1. !pip install

    • ! 表示在 Jupyter Notebook 或 Jupyter Lab 等环境中运行 shell 命令。
    • pip installpip 包管理器的安装命令,用于安装 Python 库。
  2. -U

    • -U--upgrade 选项表示升级已安装的包到最新版本。如果包已经安装,但不是最新版本,则会被升级。
  3. 库及其版本号

    • huggingface_hub:Hugging Face 的 Hub 库,用于与 Hugging Face 的模型仓库进行交互。
    • modelscope:ModelScope 是一个模型即服务平台,可以托管和管理机器学习模型。
    • transformers>=4.37.0:Transformers 库的一个版本要求,表示安装版本至少为 4.37.0 或更高。
    • streamlit==1.24.0:Streamlit 库的一个具体版本,用于快速构建 Web 应用程序。
    • sentencepiece==0.1.99:SentencePiece 库的一个具体版本,用于处理文本数据,特别是在处理未分割的纯字符序列时很有用。
    • accelerate==0.27.2:Accelerate 库的一个具体版本,用于简化多 GPU 训练和优化模型训练过程。
    • transformers_stream_generator==0.0.4:一个用于生成文本流的库,可以帮助实现模型的实时生成功能。
    • datasets==2.18.0:Datasets 库的一个具体版本,用于处理和加载各种数据集。
    • peft==0.10.0:PEFT参数高效微调(Parameter-Efficient Fine-Tuning)库的一个具体版本,用于实现提示编码微调技术。

安装库的目的

  • Hugging Face Hub:用于从 Hugging Face 的模型仓库下载和上传模型。
  • ModelScope:用于管理和部署模型。
  • Transformers:提供预训练模型和工具,支持微调和部署 NLP 模型。
  • Streamlit:用于快速搭建 Web 应用,展示模型的功能。
  • SentencePiece:用于处理文本数据,尤其是在使用预训练模型时。
  • Accelerate:优化模型训练过程,特别是在多 GPU 环境中。
  • Transformers Stream Generator:实现实时文本生成功能。
  • Datasets:处理和加载数据集,便于训练和评估模型。
  • PEFT:参数高效微调(Parameter-Efficient Fine-Tuning),提高模型的泛化能力和效率。

示例代码

如果你正在使用 Jupyter Notebook 或类似的环境,可以在一个代码单元格中运行如下命令:

!pip install -U huggingface_hub modelscope "transformers>=4.37.0" streamlit==1.24.0 sentencepiece==0.1.99 accelerate==0.27.2 transformers_stream_generator==0.0.4 datasets==2.18.0 peft==0.10.0

这条命令将会安装或升级上述列出的所有库到指定的版本。

注意事项

  • 版本号:确保版本号符合你的项目需求。如果不确定,可以安装最新的稳定版本。
  • 环境隔离:建议在一个虚拟环境中安装这些库,以避免版本冲突和其他依赖问题。
  • 依赖关系:确保所有依赖
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值