【Practical】线性空间

线性空间.

  • 英文名词为 Vector Space,因此其更准确的名称是向量空间
  • 向量空间形式化定义如下,关于其中的陌生名词会以Digression的形式简单解释。
  • V V V 为非空集合, P P P,在 V V V 中定义运算"向量加法" V + V → V V+V→V V+VV:对 a , b ∈ V a,b∈V a,bV 按照确定法则唯一对应于 V V V 中的元素 a + b a+b a+b;在 P , V P,V P,V 的元素间定义运算"标量乘法" P × V → V P×V→V P×VV:对 a ∈ V , k ∈ P a∈V,k∈P aV,kP 按照确定法则唯一对应于 V V V 中的元素 k a ka ka,定义的两种运算需要满足下面八大条件。
  • a + b = b + a a+b=b+a a+b=b+a
  • a + ( b + c ) = ( a + b ) + c a+(b+c)=(a+b)+c a+(b+c)=(a+b)+c
  • 存在一个元素 0 ∈ V 0∈V 0V 使得 a + 0 = a a+0=a a+0=a,称 0 0 0 V V V零元
  • 对于任意的 a ∈ V a∈V aV,都存在 b b b 使得 a + b = 0 a+b=0 a+b=0,称 b b b a a a逆元素,记为 − a -a a.
  • P P P 中有单位元 1 1 1 使得 1 a = a 1a=a 1a=a
  • 对于 k , l ∈ P k,l∈P k,lP k ( l a ) = ( k l ) a k(la)=(kl)a k(la)=(kl)a
  • 对于 k , l ∈ P k,l∈P k,lP ( k + l ) a = k a + l a (k+l)a=ka+la (k+l)a=ka+la
  • 对于 k ∈ P ; a , b ∈ V k∈P;a,b∈V kP;a,bV k ( a + b ) = k a + k b k(a+b)=ka+kb k(a+b)=ka+kb
  • 满足以上八大条件,则称 V V V 为域 P P P 上的一个线性空间,或向量空间。 V V V 中元素称为向量, V V V 的零元称为零向量, P P P 称为线性空间的基域。当 P P P 是实数域时, V V V 称为实线性空间;当 P P P 是复数域时, V V V 称为复线性空间。

Digression-域】域是一种特殊代数系统,对于代数系统 < F , + , ⋅ > <F,+,·> <F,+,> 而言,其中 < F , + > <F,+> <F,+> 是阿贝尔群, < F − 0 , ⋅ > <F-{0},·> <F0,> 是阿贝尔群,并且乘法 ⋅ · 对加法 + + + 可分配,那么 < F , + , ⋅ > <F,+,·> <F,+,> 就称为域。对于有理数集 Q Q Q,实数集 R R R 和复数集 C C C 而言, < Q , + , ⋅ > , < R , + , ⋅ > , < C , + , ⋅ > <Q,+,·>,<R,+,·>,<C,+,·> <Q,+,>,<R,+,>,<C,+,> 都是域。平时所说的实数域、复数域就是指这些集合以及定义在集合上的运算。关于代数系统以及半群、群、环以及域,有机会会在【离散数学】中介绍。本篇中,完全可以使用实数、复数与加减乘除等概念来理解这里出现的域。

线性空间维度.

  • X X X 为线性空间,如果 X X X n n n 个线性无关的元素,但任意 n + 1 n+1 n+1 个元素都线性相关,则称 X X X 为有限维空间,称 n n n X X X 的维数,记 d i m ( X ) = n dim(X) = n dim(X)=n.
  • 性质】设 X X X 为线性空间, d i m ( X ) = n dim(X)=n dim(X)=n { x 1 , x 2 , . . . , x n } \{x_1,x_2,...,x_n\} {x1,x2,...,xn} 线性无关。则 X X X 中的任意元素 x x x 都可以唯一地表示为 x = ∑ i = 1 n a i x i x=\sum^n_{i=1}a_ix_i x=i=1naixi 的线性组合.

Digression-线性无关】如果 V V V是一个线性空间,如果存在不全为零的系数 a i ∈ P , i = 1 , 2 , . . . , n a_i∈P,i=1,2,...,n aiP,i=1,2,...,n,使得 ∑ i = 1 n a i x i = 0 \sum^n_{i=1}a_ix_i=0 i=1naixi=0,那么其中有限多个向量 { x 1 , x 2 , . . . , x n } \{x_1,x_2,...,x_n\} {x1,x2,...,xn} 称为线性相关的。反之,称这组向量为线性无关的。

欧几里得空间.

  • 图源
    在这里插入图片描述
  • 实数域上的线性空间+内积=欧几里得空间,可以看出欧氏空间是特殊的线性空间,其中内积满足对称性、正定性与线性性质。
  • 欧几里得空间中以 ∣ x ⃗ ∣ = ( x ⃗ , x ⃗ ) = ∑ i = 1 n x i 2 |\vec x|=\sqrt{(\vec x,\vec x)}=\sqrt{\sum^n_{i=1}x_i^2} x =(x ,x ) =i=1nxi2 来度量 n n n 维向量 x ⃗ \vec x x 长度,据此还可以定义两个向量 x ⃗ , y ⃗ \vec x,\vec y x ,y 之间的距离 ∣ x ⃗ − y ⃗ ∣ = ( x ⃗ − y ⃗ , x ⃗ − y ⃗ ) = ∑ i = 1 n ( x i − y i ) 2 = d ( x ⃗ , y ⃗ ) |\vec x-\vec y|=\sqrt{(\vec x-\vec y,\vec x-\vec y)}=\sqrt{\sum^n_{i=1}(x_i-y_i)^2}=d(\vec x,\vec y) x y =(x y ,x y ) =i=1n(xiyi)2 =d(x ,y ).

酉空间.

  • 前部分的欧氏空间是实数域上的特殊线性空间(引入内积),将基域 P P P 推广到复数域 C C C 得到酉空间。图源
    在这里插入图片描述
  • 酉空间中以 ∣ ∣ x ⃗ ∣ ∣ = ( x ⃗ , x ⃗ ) ||\vec x||=\sqrt{(\vec x,\vec x)} x =(x ,x ) 来度量向量 x ⃗ \vec x x 的长度,类似地也可以定义距离 d ( x ⃗ , y ⃗ ) = ∣ ∣ x ⃗ − y ⃗ ∣ ∣ d(\vec x,\vec y)=||\vec x-\vec y|| d(x ,y )=x y .
  • 酉空间和欧几里得空间一个显著不同在于,欧几里得空间中可以定义两向量间夹角 < a ⃗ , b ⃗ > <\vec a,\vec b> <a ,b > 的余弦值为 c o s < a ⃗ , b ⃗ > = ( a ⃗ , b ⃗ ) ∣ a ⃗ ∣ ∣ b ⃗ ∣ cos<\vec a,\vec b>=\frac{(\vec a,\vec b)}{|\vec a||\vec b|} cos<a ,b >=a b (a ,b ),而酉空间中向量内积不一定为实数,所以无法定义。

在早期的著作中,内积空间被称作酉空间,但这个词已经被淘汰了。

度量空间.

  • 顾名思义,度量空间中任意元素之间的距离是可定义的。图源
    在这里插入图片描述
  • 例如上面定义的欧几里得空间就是一种度量空间,从不同的角度对待这些集合,关注它的不同性质,往往会反映在不同的名称上。

内积空间.

  • 前面我们看到,实数域上的线性空间引入内积概念后得到欧几里得空间,推广到复数域后得到酉空间。可以总结出内积空间是添加了一定结构的线性空间,这个结构就是【内积】,内积的作用是将一对向量和一个标量联系起来,能够形式化的讨论向量的长度和夹角,进一步讨论正交性。
  • 内积空间的定义就是前面给出的酉空间定义,但后者已经淘汰。
  • 实向量空间 R n R^n Rn 上一个向量内积 ( x ⃗ , y ⃗ ) = ∑ i = 1 n x i y i (\vec x,\vec y)=\sum^n_{i=1}x_iy_i (x ,y )=i=1nxiyi,复向量空间 C n C^n Cn 上一个向量内积 ( z ⃗ , p ⃗ ) = ∑ i = 1 n z i p i ‾ (\vec z,\vec p)=\sum^n_{i=1}z_i\overline{p_i} (z ,p )=i=1nzipi.

赋范线性空间.

  • 线性空间+范数=赋范线性空间
  • E E E 是域 K K K 上的线性空间,定义实值函数 ∣ ∣ ● ∣ ∣ ||●|| ,若它满足:
  • 正定性 ∀ x ⃗ ∈ E , ∣ ∣ x ⃗ ∣ ∣ ≥ 0 ∀\vec x∈E,||\vec x||≥0 x E,x 0 ∣ ∣ x ⃗ ∣ ∣ = 0 ⇔ x ⃗ = 0 ⃗ ; ||\vec x||=0⇔\vec x=\vec 0; x =0x =0 ;
  • 正齐性 ∀ x ⃗ ∈ E , ∀ α ∈ K , ∣ ∣ α x ⃗ ∣ ∣ = ∣ α ∣ ∣ ∣ x ⃗ ∣ ∣ ; ∀\vec x∈E,∀\alpha∈K,||\alpha\vec x||=|\alpha|||\vec x||; x E,αK,αx =αx ;
  • 三角不等式 ∀ x ⃗ , y ⃗ ∈ E , ∣ ∣ x ⃗ + y ⃗ ∣ ∣ ≤ ∣ ∣ x ⃗ ∣ ∣ + ∣ ∣ y ⃗ ∣ ∣ ; ∀\vec x,\vec y∈E,||\vec x+\vec y||≤||\vec x||+||\vec y||; x ,y E,x +y x +y ;
  • 则称 ∣ ∣ ● ∣ ∣ ||●|| E E E 上的一个范数,并称 E E E 为赋范线性空间。

收敛点列.

Digression-点列】Range of Points,也没啥好解释的吧,很多点的排列集合,类比数列。

  • 设点列 { x n } ⊂ E , x ∈ E \{x_n\}⊂E,x∈E {xn}ExE,若 ∣ ∣ x n − x ∣ ∣ → 0 ||x_n-x||→0 xnx0,则称点列 { x n } \{x_n\} {xn} 收敛于 x x x,记作 l i m   x n = x lim~x_n=x lim xn=x.
  • 柯西序列】设 { x n } ⊂ E \{x_n\}⊂E {xn}E,若 n → ∞ n→∞ n ∀ p ∈ Z + ∀p∈Z^+ pZ+ 都有 ∣ ∣ x n + p − x n ∣ ∣ → 0 ||x_{n+p}-x_n||→0 xn+pxn0,那么点列 { x n } \{x_n\} {xn} 称为柯西序列或基本列。
  • 另一种定义:设 ( E , d ) (E,d) (E,d) 是度量空间, x n x_n xn E E E 中点列,若对于任意的正数 ϵ \epsilon ϵ,都存在自然数 N N N 使得 x , y ≥ N x,y≥N x,yN d ( x x − d y ) < ϵ d(x_x-d_y)<\epsilon d(xxdy)<ϵ 成立,则称点列 { x n } \{x_n\} {xn} 称为柯西序列。

一叨.

  • 对比收敛点列柯西序列的定义发现,收敛点列一定是柯西序列,但柯西序列不一定在 E E E 上是收敛的,存在着柯西序列极限不属于域 E E E 的情况,此时该柯西序列不收敛,对应着赋范线性空间 E E E 不完备。
  • 例如实数域线性空间中一个点列 { 3 , 3.1 , 3.14 , 3.14159 , 3.1415926535897932 , . . . } \{3,3.1,3.14,3.14159,3.1415926535897932,...\} {3,3.1,3.14,3.14159,3.1415926535897932,...} 是柯西序列同时也是一个收敛点列,因为其极限 π ∈ R \pi∈R πR,但如果在有理数线性空间中考虑它,由于其极限并不属于有理数,所以该柯西序列在有理数空间中不收敛。
  • 完备的赋范线性空间也称为Banach空间,实数域线性空间是完备的,有理数不完备。

Hilbert空间.

  • 在接触支持向量机中的核函数时曾经去了解过希尔伯特空间,但当时看得云里雾里。
  • 从我们第一部分给出的线性空间开始,引入内积得到内积空间,引入范数得到赋范空间,线性空间就像亚古兽一样,遇到八神太一会进化为战斗暴龙兽,遇到大门大会进化为闪光暴龙兽,而后完备的赋范空间称为Banach空间,这时闪光暴龙兽学习到了充入数码之魂后的爆裂形态。
  • 内积空间,也就是战斗暴龙兽那一脉此时战斗力稍有不足,于是自省发现用于表示向量长度的 ∣ ∣ x ⃗ ∣ ∣ = ( x ⃗ , x ⃗ ) ||\vec x||=\sqrt{(\vec x,\vec x)} x =(x ,x ) 来度量向量 x ⃗ \vec x x 也满足范数的定义,于是内积空间在范数完备的情况下进化为Hilbert空间,战斗暴龙兽进化为了皇家骑士奥米加兽,写到这儿突然燃起来了,此处该有BGM.
  • 比较希尔伯特空间和巴拿赫空间的定义发现,希尔伯特空间一定是巴拿赫空间,但巴拿赫空间却不一定是希尔伯特空间,正好对应了奥米加兽比爆裂闪暴小强一点的设定。

Digression-核函数与希尔伯特空间】假设 K ( x ⃗ , z ⃗ ) K(\vec x,\vec z) K(x ,z ) 是定义在 X × X X×X X×X上的对称函数,并且对于 x 1 , x 2 , . . . , x m ∈ X x_1,x_2,...,x_m∈X x1,x2,...,xmX K ( x ⃗ , z ⃗ ) K(\vec x,\vec z) K(x ,z ) G r a m Gram Gram 矩阵是半正定矩阵。可以依据函数 K ( x ⃗ , z ⃗ ) K(\vec x,\vec z) K(x ,z ) 构成一个希尔伯特空间。由于该函数 K ( x ⃗ , z ⃗ ) K(\vec x,\vec z) K(x ,z ) 具有再生性,称为再生核,该空间也称为再生核希尔伯特空间。有机会的话,会对支持向量机进行补充,讲述关于线性不可分情况下使用核函数支持向量机部分。

完整过程.

  • 线性空间+内积=内积空间
  • 线性空间+范数=赋范空间
  • 线性空间+范数+完备=巴拿赫空间
  • 线性空间+内积+完备=希尔伯特空间

内积诱导范数.

  • 在内积空间 ( X , ( ● , ● ) ) (X,(●,●)) (X,(,)) 中,定义 ∣ ∣ x ⃗ ∣ ∣ = ( x ⃗ , x ⃗ ) ||\vec x||=\sqrt{(\vec x,\vec x)} x =(x ,x ) ,也就是前面所说的向量长度,它是一个满足范数定义的实值函数,称为内积诱导出的范数。
  • 证明】正定性与正齐性从内积性质可以推出,三角不等式证明如下。
  • ∣ ∣ x ⃗ + y ⃗ ∣ ∣ 2 = ∣ ∣ x ⃗ ∣ ∣ 2 + ∣ ∣ y 2 ∣ ∣ + 2 R e ( x ⃗ , y ⃗ ) ≤ ∣ ∣ x ⃗ ∣ ∣ 2 + ∣ ∣ y 2 ∣ ∣ + 2 ∣ ( x ⃗ , y ⃗ ) ∣ ||\vec x+\vec y||^2=||\vec x||^2+||y^2||+2Re(\vec x,\vec y)≤||\vec x||^2+||y^2||+2|(\vec x,\vec y)| x +y 2=x 2+y2+2Re(x ,y )x 2+y2+2(x ,y ).

Digression of Cauchy-Schwarz Inequality
∣ ( x ⃗ , y ⃗ ) ∣ ≤ ∣ ∣ x ⃗ ∣ ∣ ⋅ ∣ ∣ y ⃗ ∣ ∣ |(\vec x,\vec y)|≤||\vec x||·||\vec y|| (x ,y )x y

  • 因此 ∣ ∣ x ⃗ + y ⃗ ∣ ∣ 2 ≤ ∣ ∣ x ⃗ ∣ ∣ 2 + ∣ ∣ y 2 ∣ ∣ + 2 ∣ ( x ⃗ , y ⃗ ) ∣ ≤ ∣ ∣ x ⃗ ∣ ∣ 2 + ∣ ∣ y 2 ∣ ∣ + 2 ∣ ∣ x ⃗ ∣ ∣ ⋅ ∣ ∣ y ⃗ ∣ ∣ = ( ∣ ∣ x ⃗ ∣ ∣ + ∣ ∣ y ⃗ ∣ ∣ ) 2 ||\vec x+\vec y||^2≤||\vec x||^2+||y^2||+2|(\vec x,\vec y)|≤||\vec x||^2+||y^2||+2||\vec x||·||\vec y||=(||\vec x||+||\vec y||)^2 x +y 2x 2+y2+2(x ,y )x 2+y2+2x y =(x +y )2.
  • 由于范数非负,开平方后得到三角不等式 ∣ ∣ x ⃗ + y ⃗ ∣ ∣ ≤ ∣ ∣ x ⃗ ∣ ∣ + ∣ ∣ y ⃗ ∣ ∣ ||\vec x+\vec y||≤||\vec x||+||\vec y|| x +y x +y .

Digression-复数模】考虑复数 z = a + b i z=a+bi z=a+bi,那么 ∣ z ∣ = a 2 + b 2 |z|=\sqrt{a^2+b^2} z=a2+b2 . 另外 ∣ z ∣ 2 = z z ‾ |z|^2=z\overline{z} z2=zz.

关于 ∣ ∣ x ⃗ + y ⃗ ∣ ∣ 2 ||\vec x+\vec y||^2 x +y 2.

  • 上部分证明内积诱导范数满足三角不等式时使用了等式 ∣ ∣ x ⃗ + y ⃗ ∣ ∣ 2 = ∣ ∣ x ⃗ ∣ ∣ 2 + ∣ ∣ y ⃗ ∣ ∣ 2 + 2 R e ( x ⃗ , y ⃗ ) ||\vec x+\vec y||^2=||\vec x||^2+||\vec y||^2+2Re(\vec x,\vec y) x +y 2=x 2+y 2+2Re(x ,y ).
  • 证明】设 x ⃗ = a + b i , y ⃗ = c + d i \vec x=a+bi,\vec y=c+di x =a+bi,y =c+di,那么 ∣ ∣ ( a + c ) + ( b + d ) i ∣ ∣ 2 = ( a + c ) 2 + ( b + d ) 2 = a 2 + b 2 + c 2 + d 2 + 2 a c + 2 b d ||(a+c)+(b+d)i||^2=(a+c)^2+(b+d)^2=a^2+b^2+c^2+d^2+2ac+2bd (a+c)+(b+d)i2=(a+c)2+(b+d)2=a2+b2+c2+d2+2ac+2bd,由于 ∣ ∣ x ⃗ ∣ ∣ 2 = a 2 + b 2 ; ∣ ∣ y ⃗ ∣ ∣ 2 = c 2 + d 2 ; ( x ⃗ , y ⃗ ) = ( a c + b d ) + ( b c − a d ) i ||\vec x||^2=a^2+b^2;||\vec y||^2=c^2+d^2;(\vec x,\vec y)=(ac+bd)+(bc-ad)i x 2=a2+b2;y 2=c2+d2;(x ,y )=(ac+bd)+(bcad)i,所以 2 R e ( x ⃗ , y ⃗ ) = 2 a c + 2 b d 2Re(\vec x,\vec y)=2ac+2bd 2Re(x ,y )=2ac+2bd,至此等式得证。
  • 由该等式可以很容易证明内积诱导范数的平行四边形公式: ∣ ∣ x ⃗ + y ⃗ ∣ ∣ 2 + ∣ ∣ x ⃗ − y ⃗ ∣ ∣ 2 = 2 ( ∣ ∣ x ⃗ ∣ ∣ 2 + ∣ ∣ y ⃗ ∣ ∣ 2 ) ||\vec x+\vec y||^2+||\vec x-\vec y||^2=2(||\vec x||^2+||\vec y||^2) x +y 2+x y 2=2(x 2+y 2)

柯西不等式.

  • 范数形式 ∣ ( x ⃗ , y ⃗ ) ∣ ≤ ∣ ∣ x ⃗ ∣ ∣ ⋅ ∣ ∣ y ⃗ ∣ ∣ |(\vec x,\vec y)|≤||\vec x||·||\vec y|| (x ,y )x y
  • 内积形式 ∣ ( x ⃗ , y ⃗ ) ∣ 2 ≤ ( x ⃗ , x ⃗ ) ⋅ ( y ⃗ , y ⃗ ) |(\vec x,\vec y)|^2≤(\vec x,\vec x)·(\vec y,\vec y) (x ,y )2(x ,x )(y ,y )
  • 证明 0 ≤ ( x ⃗ − a y ⃗ , x ⃗ − a y ⃗ ) = ∣ ∣ x ⃗ ∣ ∣ 2 + ∣ a ∣ 2 ∣ ∣ y ⃗ ∣ ∣ 2 − a ‾ ( x ⃗ , y ⃗ ) − a ( y ⃗ , x ⃗ ) 0≤(\vec x-a\vec y,\vec x-a\vec y)=||\vec x||^2+|a|^2||\vec y||^2-\overline a(\vec x,\vec y)-a(\vec y,\vec x) 0(x ay ,x ay )=x 2+a2y 2a(x ,y )a(y ,x ),取 a = ( x ⃗ , y ⃗ ) ∣ ∣ y ⃗ ∣ ∣ 2 a=\frac{(\vec x,\vec y)}{||\vec y||^2} a=y 2(x ,y ),得到 ∣ ∣ x ⃗ ∣ ∣ 2 − ∣ ( x ⃗ , y ⃗ ) ∣ 2 ∣ ∣ y ⃗ ∣ ∣ 2 ≥ 0 ||\vec x||^2-\frac{|(\vec x,\vec y)|^2}{||\vec y||^2}≥0 x 2y 2(x ,y )20,即 ∣ ( x ⃗ , y ⃗ ) ∣ 2 ≤ ∣ ∣ x ⃗ ∣ ∣ 2 ⋅ ∣ ∣ y ⃗ ∣ ∣ 2 = ( x ⃗ , x ⃗ ) ⋅ ( y ⃗ , y ⃗ ) |(\vec x,\vec y)|^2≤||\vec x||^2·||\vec y||^2=(\vec x,\vec x)·(\vec y,\vec y) (x ,y )2x 2y 2=(x ,x )(y ,y ),两边开平方即 ∣ ( x ⃗ , y ⃗ ) ∣ ≤ ∣ ∣ x ⃗ ∣ ∣ ⋅ ∣ ∣ y ⃗ ∣ ∣ |(\vec x,\vec y)|≤||\vec x||·||\vec y|| (x ,y )x y .

参考资料.

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值