1. 定义
数域P上的线性空间V:
加法:a+b = b+a
(a+b)+c = a+(b+c)
0元素,负元素
乘法:1a = a, 1属于P,a属于集合V
(kl)a = k(la)
乘法和加法:k(a+b)=ka+kb
(k+l)a = ka +la
2. 直和
对于线性空间,子空间,
(1)中的任意向量 ,若的表示唯一,则是直和。
(2)零向量表示唯一。
(3)
(4)
维数公式:
的充要条件是
3. 线性子空间
线性子空间W总是满足运算,因此只需要证明封闭性,即乘法运算和加法运算是封闭的。
V是V1和V2是直和,V2是V3和V4的直和,则V是V1+V3+V4的直和(根据0元素的表示是唯一的),要想证明直和,可以证明0向量表示唯一,或者是将V中a向量写成a1+a2,a1和a2属于V1和V2,然后他们维度都是n,这样根据维度公式得V1和V2的交只有0元素。
n个子空间维度公式:
先考虑3个子空间,查看他们的规律。
上面的步骤还可以继续对进行处理:
因此有:
这样三个子空间直和的条件可以是V1和V2是直和,且V1+V2和V3是直和(这样它们的交集为{0}),或者是最严格的条件即两两之间是直和。同时这也告诉我们:
多个子空间是直和无需它们两两之间都得是直和,较弱的条件是只需每个子空间和剩余子空间相加起来的空间是直和。
V到P^n上的同构:同构等价于维度相等,若有(b1, b2,...,bn) = (a1, a2,...,an)A,其中a1, a2,...,an是一组基,则A的行向量组维度等于(a1, a2,...,an)A的行向量组维度,即b1,b2,...bn的维度。坐标组的秩等于基像组的秩。
1.
2.
3.