第6章 线性空间

本文概述了线性空间的基本概念,包括加法和乘法运算的性质,直和的定义及其证明方法,以及维数公式的应用。还讨论了线性子空间的封闭性及多个子空间直和的条件。最后,涉及了向量空间与P^n上的同构,强调了基和坐标组秩的重要性。
摘要由CSDN通过智能技术生成

1.  定义

数域P上的线性空间V:

加法:a+b = b+a

(a+b)+c = a+(b+c)

0元素,负元素

乘法:1a = a, 1属于P,a属于集合V

(kl)a = k(la)

乘法和加法:k(a+b)=ka+kb

(k+l)a = ka +la

2. 直和

对于线性空间V,子空间V_{1},V_{2},

(1)V_{1}+V_{2}中的任意向量 \alpha = \alpha _{1} + \alpha _{2}, \alpha _{1}\in V_{1},\alpha _{2}\in V_{2},若\alpha的表示唯一,则V_{1},V_{2}是直和。

(2)零向量表示唯一。

(3)V_{1}\cap V_{2} = \begin{Bmatrix} 0 \end{Bmatrix}

(4)dimV_{1} + dimV_{2} = dim(V_{1} + V_{2})

维数公式:dimV_{1} + dimV_{2} = dim(V_{1} + V_{2}) - dim(V_{1} \cap V_{2})

V=V_{1}\oplus V_{2} \oplus V_{3} ...\oplus V_{n}的充要条件是\sum_{j\neq i}^{}V_{j} \bigcap V_{i} = \begin{Bmatrix} 0 \end{Bmatrix}

3. 线性子空间

线性子空间W总是满足运算,因此只需要证明封闭性,即乘法运算和加法运算是封闭的。

V是V1和V2是直和,V2是V3和V4的直和,则V是V1+V3+V4的直和(根据0元素的表示是唯一的),要想证明直和,可以证明0向量表示唯一,或者是将V中a向量写成a1+a2,a1和a2属于V1和V2,然后他们维度都是n,这样根据维度公式得V1和V2的交只有0元素。

n个子空间维度公式:

先考虑3个子空间,查看他们的规律。

dim(V_{1}+V_{2}+V_{3})=dim(V_{1}+V_{2})+dim(V_{3})-dim((V_{1}+V_{2})\bigcap V_{3})=dim(V_{1})+dim(V_{2})-dim(V_{1}\bigcap V_{2})+dim(V_{3})-dim((V_{1}+V_{2})\bigcap V_{3})

上面的步骤还可以继续对(V_{1}+V_{2}) \bigcap V_{3}进行处理:

dim((V_{1}+V_{2})\bigcap V_{3})=dim(V_{1}\bigcap V_{3}+V_{2}\bigcap V_{3})=dim(V_{1}\bigcap V_{3})+dim(V_{2}\bigcap V_{3})-dim(V_{1}\bigcap V_{2}\bigcap V_{3})

 因此有:

dim(V_{1}+V_{2}+V_{3})=dim(V_{1}+V_{2})+dim(V_{3})-dim((V_{1}+V_{2})\bigcap V_{3})=dim(V_{1})+dim(V_{2})-dim(V_{1}\bigcap V_{2})+dim(V_{3})-dim(V_{1}\bigcap V_{3})-dim(V_{2}\bigcap V_{3})+dim(V_{1}\bigcap V_{2}\bigcap V_{3})

这样三个子空间直和的条件可以是V1和V2是直和,且V1+V2和V3是直和(这样它们的交集为{0}),或者是最严格的条件即两两之间是直和。同时这也告诉我们:

多个子空间是直和无需它们两两之间都得是直和,较弱的条件是只需每个子空间和剩余子空间相加起来的空间是直和。

V到P^n上的同构:同构等价于维度相等,若有(b1, b2,...,bn) = (a1, a2,...,an)A,其中a1, a2,...,an是一组基,则A的行向量组维度等于(a1, a2,...,an)A的行向量组维度,即b1,b2,...bn的维度。坐标组的秩等于基像组的秩。

1. 

2.

3. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

heine162

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值