【NA】函数最佳逼近(四)正交多项式拾遗

勒让德多项式.

  • P 0 ( x ) = 1. P_0(x)=1. P0(x)=1.
  • P 1 ( x ) = x . P_1(x)=x. P1(x)=x.
  • P 2 ( x ) = 1 2 ( 3 x 2 − 1 ) . P_2(x)=\frac12(3x^2-1). P2(x)=21(3x21).
  • P 3 ( x ) = 1 2 ( 5 x 3 − 3 x ) . P_3(x)=\frac12(5x^3-3x). P3(x)=21(5x33x).
  • P 4 ( x ) = 1 8 ( 35 x 4 − 30 x 2 + 3 ) . P_4(x)=\frac18(35x^4-30x^2+3). P4(x)=81(35x430x2+3).
  • 勒让德多项式

切比雪夫多项式.

  • T 0 ( x ) = 1. T_0(x)=1. T0(x)=1.
  • T 1 ( x ) = x . T_1(x)=x. T1(x)=x.
  • T 2 ( x ) = 2 x 2 − 1. T_2(x)=2x^2-1. T2(x)=2x21.
  • T 3 ( x ) = 4 x 3 − 3 x . T_3(x)=4x^3-3x. T3(x)=4x33x.
  • T 4 ( x ) = 8 x 4 − 8 x 2 + 1. T_4(x)=8x^4-8x^2+1. T4(x)=8x48x2+1.
  • 切比雪夫多项式

第二类切比雪夫多项式.

  • 定义】在区间 [ − 1 , 1 ] [-1,1] [1,1] 带权函数 ρ ( x ) = 1 − x 2 \rho(x)=\sqrt{1-x^2} ρ(x)=1x2 的正交多项式称为第二类切比雪夫多项式,其表达式为 U n ( x ) = s i n [ ( n + 1 ) a r c c o s x ] 1 − x 2 . U_n(x)=\frac{sin[(n+1)arccosx]}{\sqrt{1-x^2}}. Un(x)=1x2 sin[(n+1)arccosx].
  • { U n ( x ) } \{U_n(x)\} {Un(x)} 可以由如下递推式计算: { U 0 ( x ) = 1 U 1 ( x ) = 2 x U n + 1 ( x ) = 2 x U n ( x ) − U n − 1 ( x ) , n = 1 , 2 , . . . \left\{ \begin{aligned} &U_0(x)=1\\ &U_1(x)=2x\\ &U_{n+1}(x)=2xU_n(x)-U_{n-1}(x),n=1,2,... \end{aligned} \right. U0(x)=1U1(x)=2xUn+1(x)=2xUn(x)Un1(x),n=1,2,...
  • 观察两类切比雪夫多项式的定义式,可以发现第一类切比雪夫多项式 c o s ( n ⋅ a r c c o s x ) cos(n·arccosx) cos(narccosx) [ − 1 , 1 ] [-1,1] [1,1] 上有 n n n 个零点 x i = c o s 2 i − 1 2 n π , i = 1 , 2 , . . . , n x_i=cos\frac{2i-1}{2n}\pi,i=1,2,...,n xi=cos2n2i1π,i=1,2,...,n;而第二类切比雪夫多项式的 n n n 个零点为 x k = c o s k π n + 1 , k = 1 , 2 , . . . , n . x_k=cos\frac{k\pi}{n+1},k=1,2,...,n. xk=cosn+1kπ,k=1,2,...,n.
  • 另外,关于在《分段低次插值法》中提到的龙格现象,可以将均匀插值节点替换为上面的第一类切比雪夫节点,从而有效避免了龙格现象,相关文章有《切比雪夫多项式、节点与插值龙格现象(Runge Phenomenon).

拉盖尔多项式.

  • Laguerre是法国数学家,拉盖尔多项式是拉盖尔方程 x y ′ ′ + ( 1 − x ) y ′ + n y = 0 xy''+(1-x)y'+ny=0 xy+(1x)y+ny=0 的解

  • 定义】拉盖尔多项式在区间 [ 0 , + ∞ ) [0,+∞) [0,+) 带权函数 ρ ( x ) = e − x \rho(x)=e^{-x} ρ(x)=ex 的正交,其表达式为 L n ( x ) = e − x d n d x n ( x n e − x ) . L_n(x)=e^{-x}\frac{d^n}{dx^n}(x^ne^{-x}). Ln(x)=exdxndn(xnex).
  • { L n ( x ) } \{L_n(x)\} {Ln(x)} 可以由如下递推式计算: { L 0 ( x ) = 1 L 1 ( x ) = 1 − x L n + 1 ( x ) = ( 1 + 2 n − x ) L n ( x ) − n 2 L n − 1 ( x ) , n = 1 , 2 , . . . \left\{ \begin{aligned} &L_0(x)=1\\ &L_1(x)=1-x\\ &L_{n+1}(x)=(1+2n-x)L_n(x)-n^2L_{n-1}(x),n=1,2,... \end{aligned} \right. L0(x)=1L1(x)=1xLn+1(x)=(1+2nx)Ln(x)n2Ln1(x),n=1,2,...

埃尔米特多项式.

  • 定义】在区间 [ − ∞ , + ∞ ) [-∞,+∞) [,+) 带权函数 ρ ( x ) = e − x 2 \rho(x)=e^{-x^2} ρ(x)=ex2 的正交多项式称为埃尔米特多项式,其表达式为 H n ( x ) = ( − 1 ) n e − x 2 d n d x n ( e − x 2 ) . H_n(x)=(-1)^ne^{-x^2}\frac{d^n}{dx^n}(e^{-x^2}). Hn(x)=(1)nex2dxndn(ex2).
  • { H n ( x ) } \{H_n(x)\} {Hn(x)} 可以由如下递推式计算: { H 0 ( x ) = 1 H 1 ( x ) = 2 x H n + 1 ( x ) = 2 x H n ( x ) − 2 n H n − 1 ( x ) , n = 1 , 2 , . . . \left\{ \begin{aligned} &H_0(x)=1\\ &H_1(x)=2x\\ &H_{n+1}(x)=2xH_n(x)-2nH_{n-1}(x),n=1,2,... \end{aligned} \right. H0(x)=1H1(x)=2xHn+1(x)=2xHn(x)2nHn1(x),n=1,2,...
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值