不会算命的赵半仙
码龄5年
  • 366,901
    被访问
  • 157
    原创
  • 6,288
    排名
  • 260
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2017-03-08
博客简介:

kevin_zhao_zl的博客

博客描述:
我见青山多妩媚,料青山,见我应如是。
查看详细资料
  • 4
    领奖
    总分 614 当月 29
个人成就
  • 获得193次点赞
  • 内容获得84次评论
  • 获得1,260次收藏
创作历程
  • 6篇
    2022年
  • 28篇
    2021年
  • 69篇
    2020年
  • 40篇
    2019年
  • 32篇
    2018年
  • 13篇
    2017年
成就勋章
TA的专栏
  • 多任务学习
    1篇
  • C++
    15篇
  • 线性代数
    8篇
  • 概率论与数理统计
    3篇
  • opencv
    17篇
  • 数字图像处理
    16篇
  • 高等数学
    9篇
  • leetcode
  • ubuntu
    2篇
  • 机器学习
    22篇
  • 算法
    2篇
  • 机器学习实战
    1篇
  • 《ML算法原理和实践》学习笔记
    2篇
  • 推荐系统
    1篇
  • 深度学习
    50篇
  • 语义分割
    34篇
  • 计算机视觉
    47篇
  • 卷积神经网络
    13篇
  • 弱监督
    3篇
  • 目标检测
    4篇
  • 实例分割
    1篇
  • 神经网络
    3篇
  • 图像特征匹配
    1篇
  • SLAM
    1篇
  • 注意力机制
    1篇
  • 机器人导航
    1篇
  • 图卷积神经网络
    1篇
  • 增强学习
    1篇
  • 数学
    23篇
  • 数学分析
    2篇
  • 数值分析
    9篇
  • 计算机科学基础
    3篇
  • 对抗攻击
    2篇
兴趣领域 设置
  • 人工智能
    深度学习
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

论文阅读-多任务(2021)-YOLOP:用于自动驾驶目标检测与语义分割的实时多任务模型

全景驾驶场景感知网络YOLOP包括一个共享的编码器和三个特定的解码器处理不同任务,解码器之间没有复杂的共享机制,保证网络的端到端高效训练。
原创
发布博客 2022.04.24 ·
419 阅读 ·
0 点赞 ·
0 评论

论文阅读-多任务(2020)-KL4MTL:用于多任务学习的知识蒸馏方法

多任务学习的目标是使得单个模型能够在多个任务上取得较好的结果,这样能够降低计算代价。该种模型的学习过程需要同时优化多种任务的损失,这些任务有着不同的学习难度、不同的维度以及不同的特征,对应着不同的损失函数,这很容易导致各个任务之间的学习程度不均衡。为此论文提出了一种用于多任务的蒸馏方法,首先为每个任务学习一个专用模型,然后学习一个多任务的模型用于最小化每个特定任务模型的损失并为单个模型生成相同特征。而专用模型会生成各自的特征,因此论文引入了一个针对单个任务的特征适配器来将多任务模型的特征映射到单一任务模型特
原创
发布博客 2022.04.22 ·
62 阅读 ·
0 点赞 ·
0 评论

论文阅读-主干网络(2022)-ConvNext:下一代卷积网络

论文重新对传统卷积网络的设计空间以及其他局限进行测试,逐步将ViTs中的一些Tricks应用到标注的ResNet中,发现了一些能够提升网络性能的关键因素,最终输出的网络命名为ConvNext
原创
发布博客 2022.04.20 ·
182 阅读 ·
0 点赞 ·
0 评论

论文阅读-语义分割(2021)-BiSeNetV3:重新思考用于实时语义分割的BiSeNet模型

主干网络为STDCNet,Stage3、4、5输出的特征图下采样率分别为8、16、32,然后对大感受野的特征图应用全局平均池化,并应用ARM模块将两个不同阶段的特征图融合后,再与来自Stage3的特征图进行融合,输出8x下采样的特征图,最终分割头使用3×3CBR模块、1×1卷积和一个8x上采样来获得最终分割结果。
原创
发布博客 2022.04.18 ·
127 阅读 ·
0 点赞 ·
0 评论

论文阅读-目标检测(2019)-CenterNet:目标检测转化为关键点检测及其属性回归

CenterNet将目标检测问题转换为一个标准的关键点估计问题,首先将图像喂给一个全卷积网络产生热点图,图上的峰值点对应目标的中心,每个峰值点附近的图像特征来预测目标的宽高,模型训练的方法使用的是标准的密集任务有监督学习,推断则是完全端到端没有nms后处理的方法。
原创
发布博客 2022.04.14 ·
95 阅读 ·
0 点赞 ·
0 评论

论文阅读-语义分割(2021)-DDRNet:用于实时道路场景精准分割的深度冗余分辨率网络

DDRNet用于道路场景的实时分割模型,模型基本流程如下图所示,网络经过一个主干模块后分为两个具有不同分辨率的平行分支,一个分支保持较高的分辨率另一个分支则通过多阶段下采样操作获得丰富的语义信息,两个分支的信息融合则通过双向桥接模块完成,模型最后还添加了一个DAPPM模块增加感受野以提取更丰富的语义信息。
原创
发布博客 2022.04.11 ·
170 阅读 ·
0 点赞 ·
0 评论

【一天一个C++小知识】016:c++11中的lambda表达式

1. lambda的声明方式  C++11的新特性,允许程序员再函数内部创建一个匿名函数,对于一些小型的功能模块可以使用lambda表达式实现,声明方式如下:auto fadd=[](int a,int b){ return a+b;}  fadd就是一个匿名函数,后面是它的实现,auto是自动类型,[]表示开始定义lambda表达式,可以带参数,()里面是函数的参数,{}里是函数体,也可以现视指明返回值:auto fadd=[](int a,int b)->int{ return
原创
发布博客 2021.07.19 ·
54 阅读 ·
0 点赞 ·
2 评论

ML/DL-复习笔记【十】- 分组卷积和深度可分离卷积的区别

> 本节为ML/DL-复习笔记【十】- 分组卷积和深度可分离卷积的区别,主要内容包括:分组卷积与深度可分离卷积的参数量分析。
原创
发布博客 2021.07.19 ·
130 阅读 ·
0 点赞 ·
0 评论

(CVPR2020 Oral)用于实时实例分割的Deep Snake方法

CVPR 2020 Oral Paper,用于实时实例分割的DeepSnake方法,论文采用一组连续有序的点组成物体轮廓,使得参数量大大降低更接近与目标检测中bounding box的参数量,也适用于文字与细胞的分割。该方法的基本思路是用深度学习方法改进传统snake方法【"Kass, Michael, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models.In IJCV, 1988."】的优化过程,最终在多个数据集上
原创
发布博客 2021.07.19 ·
163 阅读 ·
0 点赞 ·
1 评论

ExtremeC3Net: 使用高级C3模块的极轻量人像分割模型

  人像分割任务作为许多任务的一个中间阶段,对实时性要求极高,并且当前缺乏大规模的人像分割数据集,为此论文提出ExtremeC3Net模型和用于进行数据扩充的简单方法。ExtremeC3Net基于改进的C3模块,能够实现精度较高速度极快的人像分割,并且这种极轻量化的分割网络也在其他任务中给了我们应用的启发。论文地址工程地址1. 改进的C3模块  之前的文章提到过C3模块,即Concentrated-Comprehensive Convolution Module,其指出了轻量化语义分割网络中常用.
原创
发布博客 2021.01.16 ·
656 阅读 ·
0 点赞 ·
1 评论

SINet: 使用空间压缩模块和信息遮挡编码器的极轻量人像分割模型

  人像分割任务作为许多任务的一个中间阶段,对实时性要求极高,并且当前缺乏大规模的人像分割数据集,为此论文提出SiNet模型和用于进行数据扩充的简单方法。SINet中的空间压缩模块使用多尺度感受也来获取图像中不同尺寸的一致性信息,信息遮挡编码器则在不破坏全局一致性的前提下回复局部空间信息。该模型能够实现精度较高速度极快的人像分割,并且这种极轻量化的分割网络也在其他任务中给了我们应用的启发。论文地址工程地址  SINet包含空间压缩模块和信息遮挡编码器,前者通过使用多种尺寸的感受野信息来保持空间一致.
原创
发布博客 2021.04.22 ·
129 阅读 ·
0 点赞 ·
0 评论

C3模块-空洞可分离卷积存在的问题及轻量化语义分割模型架构技巧

C3即"Concentrated-Comprehensive Convolution",文章指出轻量化语义分割模型多采用空洞可分离卷积,但是文章指出这种方式存在的信息损失,。论文地址工程地址  构建轻量化语义分割模型的一种方式是使用深度空洞可分离卷积,但是空洞卷积和深度可分离卷积两种方式的简单结合,形成了一个过于简单的操作,造成了特征图的信息损失导致模型表现衰退(深度可分离卷积对标准卷积的不恰当近似;空洞卷积造成的相邻像素信息损失即网格效应),为此提出了C3模块,分为两个阶段,第一个阶段使用两个深.
原创
发布博客 2021.01.15 ·
682 阅读 ·
2 点赞 ·
2 评论

StyleGAN v2:对StyleGAN v1的思考与改进

StyleGAN v2在v1的基础上进行了改进,着重处理的伪影问题,被CVPR2020收录,能够生成质量更好的图像数据。其在style mixing策略,progressive growing生成方式、插值方式等方面对v1进行了改进。StyleGAN v2论文地址工程地址  StyleGAN v1 一步一步地生成人工的图像,从非常低的分辨率4×44×44×4开始,一直到高分辨率1024×10241024×10241024×1024。通过分别地修改网络中每个级别的输入,它可以控制在该级别中所表示的视.
原创
发布博客 2021.01.14 ·
1267 阅读 ·
3 点赞 ·
0 评论

StyleGAN v1 :用于生成高质量图像数据的生成对抗方法

StyleGAN是2018年的一篇文章,目前已经被TPAMI收录,该方法能够生成高质量的图像数据并且做到了高层特征可控,v1的主要工作在于设计了一个style-based生成器,其中包括了styles mixing的策略,图像随机特征的生成方式以及自适应的实例正则化的设计。StyleGAN v1论文地址工程地址  StyleGan v1的主要工作,是对将有效的信息latent code表示直接灌给输入层的传统生成器的重新设计,如下图所示:  理解style-based生成器的设计需要从以下几个.
原创
发布博客 2021.01.09 ·
714 阅读 ·
1 点赞 ·
0 评论

CVPR 2020-FaceShifter:能够应对脸部遮挡的高保真换脸方法

Face Shifter是CVPR202的一篇文章,是一个两阶段的,可用于任意两张人脸图像换脸的模型,由AEI-Net和HEAR-Net两部分组成,经过合适的训练,AEI-Net本身就已经可以得到不错的换脸效果,在此基础上,可以再训练一个HEAR-Net,着重解决目标图像脸部遮挡问题,并进一步对换脸效果进行优化。模型推理速度不俗,并且能够生成质量较高的换脸结果。论文地址工程地址1工程地址21. AEI-Net:Adaptive Embedding Integration Network  AE.
原创
发布博客 2021.01.08 ·
707 阅读 ·
0 点赞 ·
0 评论

ICCV2019-FSGAN:实现任意两张人脸图片换脸的GAN方法

Face Swap Gan是ICCV19的一篇文章,模型看起来比较复杂,总体结构是三个生成器和一个语义分割网络组成,能够实现任意两张人脸图片较好的换脸效果,在视频人脸重建中效果也比较好。论文地址工程地址  将一个换脸任务简单表述为给定两张任意的图片A和B,将图片A中的人脸换到图片B中的人脸上,方法整体的大致流程如下:输入图片A和B,首先调用第三方模型得到人脸B的欧拉角,然后利用生成模型Gr根据这个角度和人脸A,生成姿态角度与人脸B一致但保存A脸特征的人脸A’,接着利用分割模型S得到人脸B的脸部区域.
原创
发布博客 2021.01.04 ·
2455 阅读 ·
4 点赞 ·
0 评论

知识点汇总【一】操作系统三十八问

知识点汇总【一】操作系统三十八问
原创
发布博客 2021.01.02 ·
1459 阅读 ·
0 点赞 ·
0 评论

ML/DL-复习笔记【九】- 神经网络中各层的计算量与参数量

本节为ML/DL-复习笔记【九】- 神经网络中各层的计算量与参数量,主要内容包括:标准卷积、空洞卷积、转置卷积、深度可分离卷积以及全连接层的计算量、参数量与输出特征图尺寸计算。
原创
发布博客 2021.05.11 ·
246 阅读 ·
1 点赞 ·
1 评论

【一天一个C++小知识】015:c++11线程创建的三种方法

1.用一个初始函数创建一个线程  注意c++在运行一个可执行程序的时候(创建了一个进程),会自动的创建一个主线程,这个主线程和进程同生共死,主线程结束,进程也就结束了。#include "pch.h"#include <iostream>#include<thread>void print1(){ cout << "print1_1线程执行" << endl; cout << "print1_2线程执行" <<
原创
发布博客 2021.05.11 ·
91 阅读 ·
0 点赞 ·
1 评论

【一天一个C++小知识】014:C++中string与char*的区别

1.定义:  string是STL当中的一个容器,对其进行了封装,所以操作起来非常方便。  char *是一个指针,可以指向一个字符串数组,至于这个数组可以在栈上分配,也可以在堆上分配,堆得话需要手动释放了。2.区别  string的内存管理是由系统处理,除非系统内存池用完,不然不会出现这种内存问题。  char *的内存管理由用户自己处理,很容易出现内存不足的问题。  char *s=“string"的内容是不可以改的;char s[10]=“string"的内容是可以改的。  当我们定义了
原创
发布博客 2021.05.08 ·
30 阅读 ·
0 点赞 ·
0 评论
加载更多