Hadamard乘积(Hadamard Product),矩阵乘法(Matmul Product)和拼接操作(Concatenation Operation)在神经网络中的使用情况如下:
Hadamard Product点乘、内积:
Hadamard乘积是对两个相同维度的矩阵进行逐元素相乘的操作。
它在神经网络中常用于一些元素级别的操作,如非线性激活函数的应用、特征融合等。
例如,在一些注意力机制中,可以使用Hadamard乘积来加权不同特征的重要性,从而对输入进行加权融合。
Matmul Product矩阵乘法:
矩阵乘法是通过将两个矩阵相乘来实现的,其中第一个矩阵的列数等于第二个矩阵的行数。
矩阵乘法在神经网络中广泛应用于多层神经元之间的连接,例如全连接层和卷积层之间的连接。
在全连接层中,输入特征向量与权重矩阵进行矩阵乘法,以计算输出特征向量。在卷积层中,通过将输入与卷积核进行矩阵乘法来提取特征。
Concat Operation矩阵拼接:
拼接操作将两个或多个张量沿着某个维度进行连接。它在神经网络中常用于特征的组合和维度扩展。
例如,当处理多个输入来源时