概率论相关

概率的加法公式

概率的加法公式为,如果A、B是互斥事件,则满足:

P(A∪B)=P(A)+P(B)

但如果A、B两个事件不是互斥事件,则满足:

P(A∪B)=P(A)+P(B)-P(A∩B)

 例:骰子
  事件A={2,4,6}
  事件B={3,6}
  A∪B={2,3,4,6}
  那么,A∪B的概率为:

P(A∪B)=P(A)+P(B)-P(A∩B)
P(A∪B)=\frac3{6}+\frac2{6}-\frac1{6}=\frac2{3}

条件概率

以发生事件B为前提,发生事件A的概率为条件概率,表达式为:
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B)=\frac{P(A∩B)}{P(B)} P(AB)=P(B)P(AB)
 例:骰子
  事件A为出现2的倍数={2,4,6}
  事件B大于3的数={4,5,6}
  A∩B={4,6}
  那么,A∩B的概率为:
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B)=\frac{P(A∩B)}{P(B)} P(AB)=P(B)P(AB)
P ( A ∣ B ) = 1 3 1 2 = 2 3 P(A|B)=\frac{\frac1{3}}{\frac1{2}}=\frac2{3} P(AB)=2131=32

概率的乘法公式

以条件概率公式变形。A∩B的概率为
P ( A ∩ B ) = P ( A ) ∗ P ( A ∣ B ) P(A∩B)=P(A)*P(A|B) P(AB)=P(A)P(AB)
按照前面实例,A∩B的概率为:
P ( A ∩ B ) = 1 2 × 2 3 = 1 3 P(A∩B)=\frac1{2}\times\frac2{3}=\frac1{3} P(AB)=21×32=31

独立事件

事件A、B任一一个事件发生后,不会印象另外一个事件的发生。
比如投骰子
P ( A ∣ B ) = P ( A ) P(A|B)=P(A) P(AB)=P(A)

随机变量与样本值

投一次骰子,样本空间Ω={正,反},
设定结果为正面,那么:
X ( 正 ) = 1 , X ( 反 ) = 0 X(正)=1,X(反)=0 X()=1X=0
X称为随机变量,随机变量法经常省略括号,多用小写来表示。
描述上述案例的表达式:
P ( X = 1 ) = 1 2 P(X=1)=\frac1{2} P(X=1)=21

离散型概率分布与概率质量函数

离散随机变量X,每个样本值对应的概率为:
P ( X = x i ) = f ( x i ) , i = 1 , 2 , . . . P(X=x_i)=f(x_i),i=1,2,... P(X=xi)=f(xi),i=1,2,...
X是离散型概率分布,f(x_i)为概率质量函数。概率质量函数有两大特性:

  1. 概率不小于0
    0 ≤ f ( x i ) , i = 1 , 2 , . . . 0≤f(x_i),i=1,2,... 0f(xi),i=1,2,...
  2. 所有函数值的和为1
    ∑ i = 1 ∞ f ( x i ) = 1 \sum_{i=1}^{∞}f(x_i)=1 i=1f(xi)=1

连续型概率分布与概率密度函数

概率密度可以大于1。
概率密度等于一段区间(事件的取值范围)的概率除以该段区间的长度,它的值是非负的,可以很大也可以很小。

概率密度不能是负值

f ( x ) ≥ 0 , x ∈ ( − ∞ , ∞ ) f(x)≥0,x∈(-∞,∞) f(x)0x(,)

在正负无穷大区间内取积分结果为1

∫ − ∞ ∞ f ( x ) d x = 1 \int_{-∞}^{∞}f(x)dx=1 f(x)dx=1

概率密度总和与概率密度的积分

离散数据通过概率的总和来得到各种事件概率(详见概率质量函数)。
连续数据通过概率密度的积分来得到事件概率。
Eg:
离散数据,1条、2条、3条鱼
P ( 1 ≤ X ≤ 3 ) = ∑ i = 1 3 f ( x i ) = 1 P(1≤X≤3)=\sum_{i=1}^{3}f(x_i)=1 P(1X3=i=13f(xi)=1
连续数据,体长1.5cm,体长2.2cm的鱼
P ( 1 ≤ X ≤ 3 ) = ∫ 1 3 f ( x ) d x = 1 P(1≤X≤3)=\int_{1}^{3}f(x)dx=1 P(1X3=13f(x)dx=1

积分与面积的关系

将用来求面积的区间分为n个,
用△x表示底边长度,
将第i个变量记为xi
概率密度函数就是f(xi
那么,矩形面积之和为:
矩 形 面 积 之 和 = ∑ i = 1 n f ( x i ) × Δ x 矩形面积之和=\sum_{i=1}^{n}f(x_i)\times\Delta x =i=1nf(xi)×Δx
当n→∞,上述面积之和就是积分,表示为:
lim ⁡ n → ∞ [ ∑ i = 1 n f ( x i ) × Δ x ] = ∫ a b f ( x ) d x \lim\nolimits_{n\to \infty}[\sum_{i=1}^{n}f(x_i)\times\Delta x]=\int_a^bf(x)dx limn[i=1nf(xi)×Δx]=abf(x)dx
离散变量用加法,连续变量用积分

独立同分布

指随机过程中,任何时刻的取值都为随机变量,如果这些随机变量服从同一分布,并且互相独立,那么这些随机变量是独立同分布。对离散随机变量具有相同的分布律,对连续随机变量具有相同的概率密度函数,有着相同的分布函数,相同的期望、方差。如实验条件保持不变,一系列的抛硬币的正反面结果是独立同分布。

使用正态分布的概率密度函数计算概率

求体长不小于4cm且不大约5cm的概率,有概率密度函数在4到5的区间上取积分求得。转化为求-∞到5上的积分减去-∞到4的积分。需要知道均值与方差两个参数。

使用概率密度计算期望值

计算连续变量的期望值,必须计算积分。
μ = ∫ − ∞ ∞ f ( x ) × x d x = ∫ − ∞ ∞ N ( x ∣ μ , σ 2 ) × x d x \mu=\int_{-∞}^{∞}f(x)\times xdx\\=\int_{-∞}^{∞}N(x|\mu,\sigma^2)\times xdx μ=f(x)×xdx=N(xμ,σ2)×xdx
在正态分布中,积分的结果就是μ。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

银行上班的法学程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值