Python中Pandas中pd.DataFrame().loc()方法的使用

Pandas的DataFrame.loc[]用于基于标签选择数据,支持单个标签、列表、切片和布尔数组等输入。例如,通过df.loc[row2]可选取第二行数据,返回Series;df.loc[[row2,row4]]选取多行,返回新的DataFrame;而df.loc[row2,[Name,Age]]则选取特定行的特定列。
摘要由CSDN通过智能技术生成

Pandas中pd.DataFrame().loc()方法的使用

pd.DataFrame().loc[] 是pandas中用于基于标签选择数据的方法。这个方法接受一个单一的标签,或者一个标签列表、切片对象、布尔型数组等作为输入,并返回一个符合条件的新DataFrame。

下面是一个简单的例子,假设有如下的数据:

import pandas as pd

data = {'Name': ['Tom', 'Jack', 'Steve', 'Ricky'],
        'Age': [28, 34, 29, 42],
        'Country': ['US', 'UK', 'Canada', 'Australia']}
df = pd.DataFrame(data, index=['row1', 'row2', 'row3', 'row4'])

DataFrame的样子是这样的:

       Name  Age    Country
row1    Tom   28         US
row2   Jack   34         UK
row3  Steve   29     Canada
row4  Ricky   42  Australia

假设我们想要选取第二行的数据,可以使用loc方法:

row2 = df.loc['row2']
print(row2)

这个方法会返回一个Series对象,包含第二行的数据:

Name      Jack
Age         34
Country     UK
Name: row2, dtype: object

我们也可以使用loc方法来选取多行数据,比如选取第二行和第四行:

rows_2_4 = df.loc[['row2', 'row4']]
print(rows_2_4)

这个方法会返回一个新的DataFrame,包含第二行和第四行的数据:

       Name  Age    Country
row2   Jack   34         UK
row4  Ricky   42  Australia

我们还可以使用loc方法来选取某一行中的特定列,比如选取第二行中的NameAge两列:

name_age = df.loc['row2', ['Name', 'Age']]
print(name_age)

这个方法会返回一个包含NameAge两列数据的Series对象:

Name    Jack
Age       34
Name: row2, dtype: object
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值